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Code Flowchart

int divide(int x, int y)
//@requires x >= 0 && y > 0;
//@ensures x - \result * y < y;
{

int r = x;
int q = 1;
while(r >= y)
//@loop_invariant q * y + r == x;
{

r -= y;
q++;

}
return q;

}

Source Code
int divide(int x‘0, int y‘1)
//@requires x‘0 >= 0 && y‘1 > 0;
//@ensures x‘0 - \result * y‘1 < y‘1;
{

r‘2 = x‘0; q‘3 = 1;
while(r‘4 >= y‘1) {
r‘4 = phi(r‘2,r‘6); q‘5 = phi(q‘3,q‘7);
//@loop_invariant q‘5 * y‘1 + r‘4 == x‘0;

{
r‘6 = r‘4 - y‘1;
q‘7 = q‘5 + 1;

}}
return q‘5;

}

SSA Form
assert (x‘0 >= 0 && y‘1 > 0)
assert (r’2 == x‘0)
assert (q‘3 == 1)
push
check (q‘3 * y‘1 + r‘2 == x‘0)

assert (r‘4 >= y‘1)
assert (q‘5 * y‘1 + r‘4 == x‘0)
assert (r‘6 = r‘4 - y‘1)
assert (q‘7 = q‘5 + 1)
check (q‘7 * y‘1 + r‘6 == x‘0)
pop
assert (!(r‘4 >= y‘1))
assert (q‘5 * y‘1 + r‘4 == x‘0)
check (x‘0 - q‘5 * y‘1 < y‘1)

VC Assertions
...
assert (= r_2 x_0)
assert (= q_3 (_ bv1 32))
push
check (q‘3 * y‘1 + r‘2 == x‘0)
push
assert (not (= (bvadd (bmul q_3 y_1) r_2) x_0))
check-sat
pop
assert (= (bvadd (bmul q_3 y_1) r_2) x_0)
check-sat

assert (bvsge r_4 y_1)
...
pop
...
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Binary Search (Bad)

int binsearch(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@ensures (-1 == \result) || (0 <= \result && \result < n);
{

int lower = 0; // lower‘3
int upper = n; // upper‘4
while (lower < upper) // lower‘8, upper‘9
//@loop_invariant 0 <= lower && lower <= upper && upper <= n;
{

int mid = (lower + upper) / 2; // mid‘10
//@assert lower <= mid && mid < upper;
if (A[mid] == x) return mid;
else if (A[mid] < x) lower = mid+1;
else upper = mid;

}
return -1;

}

Binary Search (Bad) - Output

:note:Errors for function binsearch
:error: Error case (mid‘10 < 0x0) is satisfiable with model:
(lower‘8 == 1075021826)
(mid‘10 == ~1071921151)
(n‘2 == 1107296256)
(upper‘4 == 1107296256)
(lower‘3 == 0)
(upper‘9 == 1076103168)
(\length(A‘1) == 1610612736)

Binary Search (Good)

The problem with the above code is that the sum (lower + upper) / 2 could
overflow into the negatives, resulting in an array index out-of-bounds error. To fix this
we can replace it with the following:

lower + (upper-lower) / 2;

Then we get the following output as desired:
No verification condition errors could be found.
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Binary Search Control Flow Graph

lower‘3 = 0;
upper‘4 = n;

lower‘8 = phi(lower‘3,lower‘11);
upper‘9 = phi(upper‘4,upper‘12);

while(lower‘8 < upper‘9)

int mid‘10 = (lower‘8 + upper‘9) / 2;

return mid‘10; lower‘11 = mid‘70 + 1; upper‘12 = mid‘10;

return -1; end

lower‘8 < upper‘9lower‘8 >= upper‘9

A[mid‘10] == x
A[mid‘10] < x

A[mid‘10] > x

Abstract

I have implemented a static verification tool for C0 on top of the current C0 compiler.
This is made possible by the contracts that are a part of the C0 language. The tool
interfaces with Z3, and uses its SAT-solving capabilities to statically verify that the
program adheres to the contracts in every case. It does this by converting the program
into SSA form, then traversing the program and making assertions. Using SSA form is
crucial, as it allows the verifier to keep around assertions of previous variable generations
without having to worry about collision, since each variable is only defined once.
Currently it is successful at finding the following errors:

I Division by zero (and modulo by zero, as well as INT_MIN / or % by -1)
I Integer overflow (not an error, but can detect it)
I Array index out-of-bounds
I Null pointer dereference
I Contract violations

Verification Conditions Generation

The statement Γ ` s . [Γ′; ∆] means that given assertions Γ, the process of verifying
statement s makes new assertions Γ′ that are known to be true after s is run
(e.g. x = 3) with a list of noncritical errors ∆. These errors are satisfiable
expressions that could result in an error, given a specific model of the existing
variables. Critical errors occur when the code can be proven to have an error on all
inputs, which causes verification to halt and return the errors.

Verification of Conditionals
Γ ` e . [Γ1; ∆1] Γ ∧ Γ1 ∧e ` s1 . [Γ2; ∆2] Γ ∧ Γ1 ∧!e ` s2 . [Γ3; ∆3]
Γ ` if e then s1 else s2 . [Γ1 ∧((Γ2 ∧ e) ∨(Γ3 ∧ !e)); ∆1, ∆2, ∆3]

We know that one of the branches must have been taken, so it must be that either
the assertions from the then branch or the assertions from the else branch are true.

Verification of Loops

Γ ` invs . [Γ1; ∆1]
Γ ∧ Γ1 ` e . [Γ2; ∆2]

Γ ∧ Γ1 ∧ Γ2 ∧invs∧e ` s . [Γ3; ∆3]
Γ ∧ Γ1 ∧ Γ2 ∧ Γ3 ∧invs∧e ` invsnew . [Γ4; ∆4]

Γ ` while(e) invs s . [Γ1 ∧ invs ∧ !e; ∆1, ∆2, ∆3, ∆4]

Before verifying the loop we must check that the invariants are true. We must also
check that the invariants still hold for the changed variables at the end of the loop
(which proves the inductive quality of the invariants). We can keep around all the
contexts while in the loop since variable assignments are unique due to SSA. After the
loop, only Γ1 is related to things outside. Also we only know that the loop invariants
are true and loop condition is false if the loop contains no break statements.


