Compiler Correctness via Contextual Equivalence

Matthew McKay advised by Karl Crary

May 2, 2014

Abstract

We have developed a methodology for verifying the correctness of the closure conversion
phase of a compiler, adapted from the work by Perconti and Ahmed. This lets us verify that
individual components of programs are compiled correctly, so they can be linked with any other
code and still behave as desired. We do this by using a shared language that encompasses both
the source and target languages in which the compiled code can be reasoned about alongside
its source, which we do using contextual equivalence. Our main improvement over previous
methods is that we dont need boundaries that separate the source and target language while

inside the shared language.

1 Introduction

In recent years the area of compiler verification has seen significant research attention. Being
able to formally verify the correctness of a compiler is a worthwhile goal, as it provides confidence
in compilers used for critical systems, which absolutely need their code to be correct. A recent
work on verification on which we will focus most of our attention is Verifying an Open Compiler
Using Multi-Language Semantics [3], by James T. Perconti and Amal Ahmed. Our approach in
the following paper is very similar to theirs, however with some improvements, which make up
the substantial contributions of our research.

The goal with our research is to verify compilation of program components as opposed to
compilation of whole programs. The advantage of this is that realistically, compiled code often
gets linked with other code, be it compiled from the same language, a different language, or
even just written in the language being compiled to. Thus only being able to verify whole
programs severely limits the strength and usefulness of the verification, as we couldn’t verify
code that gets linked with other code later on (or even just libraries). The problem with checking
correctness of components is that they can’t be simply run, as they are not complete programs.
To do this we make use of contextual equivalence. Two program components are said to be
contextually equivalent if, for any potential program context (that is, a program with a hole that
the components fit into) that the components could be put in, the two whole programs created
by putting those components into the same program context will have the same behavior. To
put it simply, the contextual equivalence of two components essentially says that no matter how
we use the two components, we have no way to tell them apart. This is desirable, as it fulfills
our goal to verify that compiled components can be reliably linked with other code and still
behave as intended.

While this sounds great, there is a slight problem. We’re compiling code from some source
language S to a target language T', which are two different languages. So if we have some
term e in the source language that compiles to € in the target, these two terms are in different
languages, so how can we compare them with contextual equivalence when they can’t be put
into the same program context?

For our purposes we focused on the closure conversion phase of a compiler, compiling a
System F like language, but with the addition of existentials and recursive functions. This is
the source language .S, and the target language T is the same except instead of recursive functions
there are closed recursive functions resulting from closure conversion. Closed recursive functions
are simply the same thing as recursive functions, except that they cannot use any variables bound

outside of it and is only allowed to use its argument and its own function variable. Given a term

e : 7 in the source language, we compile it to a term in the target language € : ||, where |7| is
the type translation of 7.

To solve the previously mentioned problem, we created a new language C that is the com-
bined language of S and T, that is it includes all types and terms of both languages. Thus it
is simply the language S but with closed recursive functions as well. This allows us to have
program contexts in the combined language, and compare source and target code in the com-
bined language. However a source component may compile to a target component of a different
type (they are different languages, after all). To account for this we define two functions in
the combined language, over, and back,. The function over, takes something in the source
language and changes it at the top level to have the appropriate type |7] in the target language.
Similarly, back, does the opposite, taking something in the target language and changing it so
that it has the appropriate type 7 in the source language. Of course, these will all be terms
in the combined language, since they include structures from both languages. These functions
don’t actually affect the behavior of the code, as the basically make normal recursive functions
look like closed recursive functions and vice versa (and the two types of functions behave in
much the same way).

This leads to the statement of our compiler correctness theorem. We prove that, if A;T" kg
e : T is in the source language compiles to A;T' k7 € : |7| in the target language, then e
is contextually equivalent to back, ([overr/I'Je’) in the combined language, which we write
A;T F¢ e = back,([overr/T]e’) : 7. The reason for the substitution (which simply states
over,(z) for x in € for every z : 7 in T') is that it is necessary to prove the variable case of the
theorem. However, we also prove something even stronger. If we know that ' g e; & eq : 7 in
the source language, then it must be that A;|T'| b7 €3 = &3 : |7] in the target language (where
IT'| simply means I but with the types inside translated). This theorem effectively means that
terms that are equivalent in the source language will be equivalent after being compiled, so
therefore compiler preserves equivalence. With a little extra work, this theorem will follow from

our compiler correctness theorem. The full proofs for these can be found in appendix E.

2 Prior Work

The primary previous work that we are concerned with is that of Perconti and Ahmed [3],
which we focused on improving. Their work actually involved three languages, a similar source
language, the closure converted language, and an allocation lanugage. Thus their compilation
involved two stages, closure conversion and allocation.

In their work they had three languages, F' (System F with existentials and recursive types),

C (the closure converted language), and A (the allocation language). They then merge these lan-
guages together into a multi-language system that, while it includes everything in each language,
still keeps them separate through “boundaries,” as they refer to them. These are essentially
metafunctions added to the languages that convert from one language to another and allow
terms in one language to be placed within a term in another language. Also, since the languages
were still distinguished, they didn’t share type variables, so special conversions were necessary
for polymorphic types when going through boundaries. Their theorem was similar in concept
to ours, as it stated that a term in the source was contextually equivalent to the the compiled

code, just with the proper boundary function applied to it.

3 The Combined Language

Our language (which well refer to as the “combined language”), which is outlined in Figure 1, is
essentially an amplified System F with the addition of existentials and recursive functions (the
reason for recursive functions instead of fix will be explained later). The only other thing to
note is that along with normal recursive functions, there are what we will refer to as “closed”
recursive functions (and correspondingly there is “closed” application to coincide with normal
application), which have their own type and are denoted by the hat over them (and similarly,

their application uses the same symbol).

Tuo=a|unit |int |7 X7 |7 = 7| 7= 7|V |3aT
ex=Q|n|epelifz(eee)| x| (ee) | me

| fun f(z:7).e|ee|fun f(z:7)e| e

| Aa.e | e[r] | pack[r’, ¢] as Ja.7 | unpack|a,] = eine
pu=-+]—|x

Fe=-|Tz:7 A=A«
Figure 1: The combined language

The reason for having two recursive functions is because this combined language is just that,
the combination of two languages, which we will refer to as the “source” language and the
“target” language. The source language is System F with existentials and recursive functions
and the target language is closure converted System F with existentials and recursive functions,

which is simply System F with existentials and closed recursive functions, since the only part of

the language that actually changes through closure conversion are the functions and applications.
Thus the source and target languages are identical to the combined language, except without
the rules relating to the type of function that they do not have. We will denote that a term is
typed in the source language by writing A;T" Fg e : 7, and similarly we write A;T" b7 e : 7 for
terms typed in the target language. We also write A;T" F¢ e : 7 when in the combined language,
however since we are primarily discussing the combined language we will forgo its use and just
write A; ' e : 7, unless it is necessary for clarity.

In Figure 2 we have the relevant typing rules for functions and closed functions. The full
static and dynamic rules for the combined language can be found in appendices A and B,
respectively. It is worth pointing out that the inside of a closed function can only be typed
under a context of just the function argument and the bound variable for the function, as they
represent functions resulting from closure conversion (hence the name “closed”).

At Ttype AT f:r =7 z:7he: 7
A;TFfun f(z:7)e:7— 7

T fun

AbFTttype A;f:7—7 x:7he: 7
ATHfun f(z:7)e:7 =17

Tcefun

Figure 2: The static typing rules for functions and closed functions

The purpose for having this combined language is that we can reason about both source
terms and target terms together, which is what we want to be able to use contextual equivalence.
In the following sections, we will first discuss closure conversion, and then outline contextual

equivalence over terms in the combined language and how we actually accomplish it.

4 Closure Conversion

Closure conversion, for our purposes, is very much the standard conversion process. The cor-
responding type translation |7|, which is mostly trivial, is in Figure 3. We also define the type
translation of a context I' to be |I'|, which is defined by |- | = - and |I',z : 7| = [I'|,z : |7|.
This is necessary for stating things about the compiled code, as it can only use variables of the

translated types, now that it is in the target language.

la| = «
lunit| = unit
|]int| = int
(71 X 7| = || X |72
|71 = 72| = Ja.((|71| X @) = |12|) X «
Va.r| = Vo |7|

|Fa.7| = Jau.|7|
Figure 3: The closure conversion type translation

The translation is of the form A;T" kg e ~» € : 7. The main convenience in analyzing
closure conversion is that the source and target language don’t differ very much, as most of the
conversion doesn’t do anything. The only interesting cases involve functions, namely the rules
for functions and closure converted functions, which are below in Figure 4. The remaining rules

can be found in appendix C.

=z 71,2 0 Th A Fg Ttype

AT 7, fim—= 7T Fsge:m v e Tepp = |71 X oo X |70 Rf
un

AT kg fun f(z:7).e : 7 — 7 ~ pack|Tens,
<(El?1 2|7 X Tenv)-[Pack[Teny, (f, m2y)] as [T — 7|/ f]
[m1y/x][mmey/x1)...[m17e. ..oy [T —1][T2... T2y [20] €
)y (w1, (o A@p—1,@n)..)))] as |7 — 7

ATkger:7T—=17 ~e1 ATkFges:T~ 6

— Ra
A;T kg ey eg : 7' ~» unpack|a, x] = €7 in(mz) (€2, Tox) PP

Figure 4: The closure conversion translation rules for functions and applications

4.1 Fix vs. Recursive Functions

One relevant note to discuss is the fact that we used inherently recursive functions instead of
the more general fix operator. We also didn’t use recursive types, as in other similar works [3],
though that was a result of the added complexity that they bring. The reason for not using fix
is because of a problem that arises from performing closure conversion on terms that contain
fix . Suppose in our language we instead had simple lambdas, and had fix with the static

and dynamic rules found in Figure 5.

A;Te:The:T
AT Hfix (x:7)e:T

T fix

fix (v 7)o [(o) e/ale 0

Figure 5: Static and dynamic rules for fix

Now we can construct the term fix (f : int — int).A\x : int.ifz(z,0, f (x — 1)). This
doesn’t do anything interesting, but it demonstrates the problem with fix and closure conver-

sion. After closure conversion, this translates to
fix (f :int — int).pack[int — int, (Ay : int x (int — int).ifz(my,0, E), f)

Where F = unpack|a, z] = moy in(mz) (my — 1,m22). Define the above to be F'. Then this
will step to

pack[int — int, O\\y :int x (int — int).ifz(my, 0, E), F)

This is because the whole term gets substituted in for f due to the definition of fix . Call the
above F’. However, for this to be a value, we need the inner term to also be a value (that is,
the term <:\\y :int x (int — int).ifz(my,0, F), F)). But we just said that F steps to F’, so
the second term in the pair can make a step to F’. But this can also step, so this goes forever
and we never reach a value. This is the problem with fix , as it does not work with closure

conversion, which is why recursive functions were used instead.

5 Contextual Equivalence

The idea behind contextual equivalence is that terms are equivalent if, when both are put into
any program context (a program with a hole in it), they will behave the same (that is, have
the same terminating behavior). This is a practical concept of equivalence because it basically
states that these two programs will always do the same thing no matter how they are used, so
for practical purposes they might as well be the same.

More formally, we say that that two expressions in the combined language, A;T'F e : 7 and
A;T € : 7, are contextually equivalent, which we write A;T' e = ¢’ : 7, if and only if for
every program context C : (A;T'>7) ~» (->int), C{e} ~ C{e'}, where ~ is Kleene equivalence,
which basically says that C{e} and C{e’} have the same terminating behavior. The various
different contexts are outlined in appendix D.

Unfortunately contextual equivalence is not very useful for proving properties since it isn’t

really possible to check all possible contexts and verify that they behave the same. So we

developed a logical equivalence, similar to those found in references [1][2][4]. We then prove
that this logical equivalence coincides with contextual equivalence, so that we can use them
interchangebly. This is important for many of the proofs that we need. The full development
of this logical relation, along with the many associated proofs, can be found in appendix E.
What we would ideally like is that, given that A;T' g e ~ € : 7, that is that e translates to
e, we want to be able to say that e and e are contextually equivalent. But this isn’t possible,
as we have that A;T' Fe: 7 and A; || F &: |7], and it is quite probable that 7 and |7| are not
the same (which is the case if 7 includes any arrow type). Thus we have no type at which we
can say the two are contextually equivalent. To resolve this, we developed two functions in the
combined language: over, and back,, the definitions for which appear in Figure 6. Note that
we use lambdas () in the definitions for conciseness, they merely represent recursive functions

that do not use their function variable.

over, = AT : a.x
ovVerynit — AX : unit.x
oveript = AZ : int.x
OVerr xr, = AT : T X To.(OVer, mT, OVer, ,mox)
overs ;, = Af : 71 — To.pack|r; — Ty, <//\\y Cm| % (11—).
over,, ((my) (backs, my)), f)]as|m — 7|
overyy.,r = Az : (Va.7).Aa.(over,(z[a]))
oversi,., = Az : (Ja.7). unpack|w, y] = x in(pack|a, over,(y)] as |Ja.7|)
back, = \z : a.x
backynit = A% :unit.x
backipe = Az : int.x
back:, xr, = Az : |11 X T2|.(back,, Tz, back,, mox)
backr, r, = Af : |11 — 72|.A\y : 7. unpack]q, g] = f inback,,((m19) (over, y, m2g))
backy,r = Az : [Va.7|.Aa.(back, (z[a]))

backg,r = Az : |Ja.7|. unpack[a, y] = x in(pack|a, back,(y)] as Ja.7)

Figure 6: The definitions of over, and back;

Also note that as a shorthand, we define [overr/T'] = [over,, (z1)/x1]...[over,, (,)/xy] for
I'=x1:7,...,z, : T,. A similar definition applies to backr.

By the definitions, it is clear that both functions are in the combined language, and have
the types A;T' F over, : 7 — |7| and A;T' F back, : |7] — 7. From this it is clear their
intent, as over, takes terms of type 7 in the source language and converts them to terms of
type |7] in the target language (and back, does the opposite). Of course even though it may be
that A;T k¢ over.(e) : |7|, this does not imply that A;T' Fr over,(e) : |7], as e may contain
terms not in the target language (and so might over,, in fact). Thus these functions purpose
is only for reasoning in the combined language. By looking at their definitions, it is easy to
tell that neither function actually looks inside the term that it is applied to. All it does is pull
apart its type at the top level to convert it to the opposite language’s type, never going into
the term and translating it like closure conversion does. Most cases are simple, just pulling
apart then repackaging the term as the correct type. However the function cases, logically, are
more complicated due to the translation being nontrivial. The function over._,, essentially
creates an empty closure and wraps the function up so it looks like the right existential (and
also converts the new argument back). Opposingly, the function back,_,,s takes an existential
of the correct type and pulls out the closure and uses it to call the function with the converted
argument.

The most important result of this is that we now have a way to look at compiled code as if
it were really source code, and vice versa. Now we can do what we originally wanted to, that
source code and its compiled code are contextually equivalent (or at least, almost). It is also

necessary that these two functions are inverses of one another, that is that
over; o back, = id = back;, o over,

The proof of this, along with the many other relevant proofs, can be found in appendix E.
Using this and our logical equivalence we can show that if A;T'Fg e~ é: 7, then A;T F e &
back, ([overr/Té) : 7. By the above this also means that A;|T'| F over,([backr/T'|e) =& : |7|.
Since over, and back, don’t actually effect the behavior of the code, these imply that the source
code and the compiled code do in fact behave the same.

There is one particularly interesting point that we will note about the proof of the above
theorem. There are two essentially “dual” lemmas regarding polymorphism that are the key to
doing the proof. These lemmas related two slightly different uses of each of the over, and back.
in our logical equivalence. The parametricity of the logical equivalence was necessary here, as
it allowed us to use exactly the right relations to make the lemmas hold. One of the lemmas

was necessary for proving the polymorphic application case in the main theorem, and the other

10

lemma was necessary for proving the existential pack case. Unfortunately fully understanding
the lemmas involves understanding the logical equivalence, but we will give a basic idea of the
lemmas here. To see the lemmas in their entirety, look at sections 11.3 and 11.4 in appendix E.

To help understand the lemmas, we will focus specifically on one part of one of them. What
this does is effectively relate [7'/a]back, to back(,/ o, at the type |7| — [7'/a]7 in our logical
equivalence. Looking at these, [7'/a]back, converts the type of what it is called on up to 7, then
leaves the a alone. On the other hand, back;: /4, converts everything, including the a type
variable. This is basically saying that, under the right relation, we can pull the type substitution
out of the back function to the top level, saying that converting the « part of the argument
is equivalent to not converting it. The other parts of the lemmas say similar things, just with
different configurations of over and back. These lemmas are necessary to complete the proof

cases related to polymorphic and existential types.

5.1 Erasure

However, we still have our final theorem to justify. To do this we need abstraction between
our source and combined languages, as well as our combined and target languages. What this
means is that, we want to be able to say that if two terms are equivalent in the source, then
they are equivalent in the combined language, and similarly that if two terms are equivalent in
the combined language, then they are equivalent in the target. This will let us prove the final
theorem. Going from the combined language to target is simple, as the language gets smaller.
However, going from the source to the combined language is a little more subtle. The reason it
isn’t obvious is because the combined language includes something (specifically closed recursive
functions) that does not appear in the source. It is still simple, as logically the closed recursive
functions don’t provide any functionality that normal recursive functions don’t already provide,
so we can prove it with another translation, which we will call erasure. The actual translation is
simple, so we won’t say more about it here other than that all it does is convert closed recursive
functions to normal recursive functions. For the full translation, see appendix E.

As for what we do with erasure, as mentioned above this lets us say that terms equivalent in
the source language are equivalent in the combined language. Thus if we assume that terms e;
and e are contextually equivalent in the source, we know that they are contextually equivalent
in the combined language. But by our earlier theorem we know that each of these is contextually
equivalent to the back of their compiled selves, that is A;T' F e; & back, ([overr/Té1) : 7 and
A;T F e @ back,([overr/I']éy) : 7. Transitivity then gets us that A; T F back, ([overr/T']é;) &
back, ([overr/Téz) : 7, from which some simple reasoning using the fact that over, and back,

are inverses, we can get that €; is contextually equivalent to € This proves our desired final

11

theorem, and proves that our compiler preserves equivalence.

6 Comparison with Prior Work

As mentioned previously, our work is an attempt to improve upon the work done by James T.
Perconti and Amal Ahmed [3]. While their work spanned two compilation phases, we can only
compare our work to the first, the closure conversion phase, since that is what our work focuses
on.

The main difference is that in their work, while they do merge the source and target languages
together, they still keep them separate and only go from one to another using boundaries, which
are additional terms that can put a term from one language into a term for another language. In
some sense, these perform a similar operation to our over, and back, functions, however over.;
and back, are written as functions in the combined language, so they have the advantage of not
being hardwired into the language itself. In their paper they also have to handle a few special
cases for type variables from one language occurring inside components of another language,
which they solve using suspended type variables and lump types. Our method has no need for
either of these, as in the combined language, type variables are not distinguished between the
two languages. That is, a type variable in a source term and a type variable in a target term
look the same in the combined language, as they are just normal type variables there. This is
all due to the fact that there are no boundaries between the language. Since the two languages
are completely combined, they share type variables, along with most other things.

This makes the actual reasoning about the compiler significantly simpler, as there isn’t a
lot of extra conversion that is taking place besides the main compilation. While our over, and
back, functions do a little work, they are really just there to make types line up properly, not
act as a connection between the languages that is built into the language. This is our main

contribution, the improvement over prior work.

7 Future Work

We have already mentioned how our method is meant to be an improvement on the work by
Perconti and Ahmed [3]. However, we have only improved the first half of the work that they
did, which was the compilation phase of closure conversion. Their work also extended into an
allocation phase of a compiler, going between three languages total. In the future, work could be
done to apply our methodology to the allocation phase of a compiler and see if it can be made to

work for that as well. It could even potentially be extended to other stages of compilation. The

12

main difficulty will be combining the languages, as other compiler phases have a much greater
difference between the source and target languages. Closure conversion was a good phase to
start with to see if it was possible, though due to only having one primary difference between
languages it made the combination of the languages easier to reason about.

There is certainly a lot of potential for this method to be applied to other cases, since the
general approach used is not specific to the language used. It will, however, likely be much more

difficult as the combined language grows in complexity.

13

References

(1]

Karl Crary and Bob Harper. Syntactic logical relations for polymorphic and recursive types.

Electronic Notes in Theoretical Computer Science, 172:259-299, 2007.

Bob Harper. Practical Foundations for Programming Languages, chapter 49. Cambridge
University Press, 2012.

James T. Perconti and Amal Ahmed. Verifying an open compiler using multi-language

semantics. Proceedings of the 23rd European Symposium on Programming, 2014.

Benjamin Pierce, editor. Advanced Topics in Types and Programming Languages, chapter 7.

MIT Press, 2004.

14

A Combined Language Statics

A.1 Types
A F unit type Dunit A |- int type Dint
D AT type AF 1ptype)
A at atype var AF 7 X o type pair
At T type AF 1ptype At T type AF 1ptype
D fun Dcefun
Al T — T type At 1 = Ty type

A aF Ttype A a b Ttype

———— D 1 _— i

A FVoa.T type fora A F Ja.T type Dewists
A.2 Terms

ATFO it LM NTFz.r 10

A;T'Fep:int AT hReg:d

‘ nt .
A;T'Fn:int Tint A;TFeipes: int Tintop
A;'Feyp:int A;T'Fes:7m A;T'bFeg:T
X Tifz
A;T - ifz(ey,es,e3) : 7
AbTttype AT f:r—7x:7he: 7 ATker:7—7 AThkey:T
T fun Tapp
A;THfun f(z:7)e:7— 1 AT kepe: 7

AFTtype A;f:7—7 x:7he:7

. . N .
A Teefun A,F}—el.T:>7'A A,Fl—eg.Tchapp
A;THfun f(x:7)e:7=>7 AT e eg: 7

T

AT ke :m A;Fl—eQ:TQT . AT ke:m X1 i€{1,2}T)
air
AT F (eg,e9) : 11 X 7o p AT Fme: 7 proj

Aya;TRe: T AT Ee:Var ATH7T type Tt
a
A;TF Aocce s Vaur Ttlam AN N C R Ao bp

AF7'type Ajabttype A;ThRe:[r/a]r
A;T pack[r’,e] as Ja.7 : Ja.T

Tpack

ATFey:Jdan Ao Tix:mbes:m AR Tmtype
A;T - unpack|[o, 2] = ej ines : 1o

Tunpack

15

B Combined Language Dynamics

B.1 Values

) ejval esval
Vunit -

—— Vi Vpair
nval Vint (e1,ea) val P

() val

V fun

— Veefun
fun f(z:7).eval fun f(x:7).eval

eval
Vpack
Ad.eval VHam pack|[r’, e] as Ja.T val b

B.2 Evaluation

e1 — €} . €o — €h
FEintop,

Eintops nipne =71

7 7 —————— Finto
eipes — ejpes nipes — Nipes nipng — n D3

el — el

ifz(ey, eq,e3) — ifz(el, eq, e3)

E’ifZl

n=>0 . n#0
- Eifz -
ifz(n,eq, e3) — eg ifz(n,eq, e3) — e3

e1 — el eg > €h
Eapp:

_— E
e1 ea — €} es (fun f(x :7).e) ea — (fun f(z: 7).e) € app2

egval Eapps
(fun f(x:7).e) e2 — [fun f(x :7).e/f][ez/x]e

/
e1 — e €2 = €y

- _ —
- cearp (fun f(z:7).e) ez = (fun f(z:7).e)7¢€)

_ FEccapps
e1 ey — e es

eoval
(fun f(z : 7).e) ey — [fun f(x: 7).e/f][e2/x]e

FEccapps

e1 — e Evai epval eg — €} Evai
Dair Dairy
(e1,e2) > (e7,€2) (e1,€2) = (e1, €5)

e e . 1€{1,2} e;val egval)
———— Eproj, FEprojs
;€ F— ;e 7Ti<€1,€2> = e;

e e
———=— Fta FEta
[l el PPY (Aae)r] s [r/aje PP

16

!/
; e—e — FEpack
pack[7’, e] as Ja.7 > pack[r’, '] as Ja.T

e1 — e}
- — Funpack,
unpack|a, z] = €1 ineg — unpack|a, 2] = €] ines
cval Funpacks

unpack|a, z] = (pack[r’, e]as Ja.7) ines — [7'/a][e/z]es

Closure Conversion

Iz)=r71
AlFsz:7~1

Runit Rvar

A;TFg O :unit ~ ()

A;T'Fgei:int ~¢é A;TbFges:int ~ &

Rint Rintop

A;TFgn:int ~n A;T'Fgerpes:int ~ e1pér

A;Tkgep:int~~é; A TbFgey:T7~weéy A;l'Fges:T~eé3

Rifz

A,F }_S ifz(el, €9, 63) LT v ifz(e‘l, 6_2, 6_3)

ATFser:m~ep AjTkges:m~ e

Roai
AT g (er,e2) : 71 X To ~ (€1, 62) pair

A;Thge:mp xm~e i€{l,2}
AT Fg me: 7, ~ m€

Rproj

Aa;TkFge:T~ e A;Thge:VaT~¢e AbgT type

A;T kg Aae : Va.r ~ Aa.e Rtlam AT Egelr’] : [7'/a]T ~ e[|7'|]

Rtapp

Abgt'type Ajabgttype A;Thge:[r/a]r~e

Rpack
A;T g pack[r’, e] as Ja.7 : Ja.T ~ pack||T’|, €] as a.|7| pac

ATkgey:dam~é Aalz:mbgey:m~é Abgtatype

Runpack
A;T bg unpack|o, 2] = e; ineg : T2 ~ unpack|a, 2] = €3 iné p

T=x1:71,.0,Tn : T A g Ttype
ATox:r, f:7—>T Fge:T € Tepw = 71| X oo X |0

R
A;T kg fun f(z:7).e: 7 — 7 ~ pack|Tenw, fun

((f/uz Fy 7] X Tenw)-[Pack[Tens, (f, m2y)] as |7 — 7|/ f]
[mry/x][mimey/x1]... [T 72 oY/ X1 | [T.. T2y [Ty] €
), {1, (. {Tp_1,xn)...)))] as |7 — 7|

17

AThrger:T—o7 ~é& ATkges:7~é&

A;T kg eg eg: 7'~ unpack|a, 2| = €1 in(mz) (€3, mox)

Rapp

D Contexts

o: (A T7)~ (AT T) Cid

C:(A;Tp7)~ (A TVpint) A TVEFe:int
—— Clintopy
Cpe: (A;T'>7) ~ (A TV > int)

C:(A;T>7)~ (AsTVpint) ATVEe:int
—— Clintops
epC: (A;T 1)~ (AT > int)

C:(A;FDT)W(AI;FIDint) A/;Fll—ez;q-’ A/;Fll—e?);r’ Cf
ifz(C,eq,e3) : (AT 1) ~ (AT > 77) ifz1

AT Fepiint C:(A;T>7)~ (AT 7)) AT Feg: ! iy
ifz(elacae3):(A;FDT)W(A’;F/DT/) 1] 29

AilMFer:int C:(ATer) — (A7) AiTFer:r o,
ifz(ey,e2,C) : (A;T>7) ~ (AT > 77) ifzs

C: (A7)~ (AT, fim >, :m>T2) A'F7type Cf
fun f(z:7).C: (AT 1)~ (AT b1 — 72) u

C:(AsTo7)~ (A fim > myx:mbm) A'bF T type

— Cccfun
fun f(z:71).C: (A;T>7) ~ (AT b1 = 70)
C:(A;T>7)~ (AT 5 1) AiTVEFe:m

Ce: (A Tb7)w (AT bm) app
C:(A;To7)~ (ATVpT) AT bFe:n —m

T Capps

eC: (A TpT7)~ (AT b1)
C:(A;To7)~ (AT = 1m) ATVEe:m o

Ce: (A;T7)~ (AT b 1) coappL
C:(ATe7)~ (AT >7) A’;F’}—e:71:>7'20

€C: (A;ToT)~ (AT b 1) ceappz

18

C:(A;To7)~ (AT'p1) AT Re:n
(C,e) : (A;TT7)~ (AT b1 X T2)

Cpairy

C:(A;To1)~ (AT b1) AT Re:n
(e,C) : (A;T>7) ~ (AT D7y X T2)

pairy

C:(A;To7)~ (AT b1 x 1) d€{l,2}

Coroi
miC: (AT 7) ~ (AT b 7y) proj

C:(A;To7)~ (A, T > 1)
Aa.C: (AT 7) ~ (AT > Vaur!)

Ctlam

C:(ATo7)~ (A TVpVar') A'F7"type

Clr"] : (A;T>7) ~ (AT > [/ Ctapp

A'F1r"type Aljab7'type C:(A;T7)~ (AT [/a]r)
pack[7”,ClasJa.7": (A;T>7) ~ (AT > 3a’)

Chpack

C:(A;To1)~ (AT 3an) A aIVz:mbe:m A'Frmtype
unpack[o,z] = Cine: (A;T>7) ~ (AT > 72)

Cunpack;

C:(ATo7)~ (A sz :impm) ATMEe:Jarm A'Fmtype
unpack[a,z] = einC: (A;T > 7) ~ (AT > 72)

Cunpacks

E Proofs

The following is a full account of all proofs involved in the above paper. Some of the above
information will be repeated, as they are mentioned where they first appear in the proofs. The

proofs read in order, so any lemmas/theorems used in a proof will have been proven before it.

19

Contents

Languages

1.1 Source Language e
1.2 Target Language L L
1.3 Combined Language

Combined Statics
2.1 Types . . .o e
2.2 Termso e

Combined Dynamics

3.1 Values e e e
3.2 Evaluation e
3.3 Termination L. e e
Contexts

4.1 Context Composition e
Contextual Equivalence

5.1 Definitions e e
5.2 Substitutivity
Compactness

6.1 Simulation e
6.2 Compactness i e
Relations

7.1 ST Closure 0 e e e
7.2 Admissibility
Logical Equivalence

8.1 Compositionality e
Logical and Contextual Equivalence Coincide

9.1 Reflexivity oL e
9.2 CONGruence v v v v vt i e e
9.3 Respect for Contextual Equivalence
9.4 Logical Equivalence implies Contextual Equivalence
9.5 Contextual Equivalence implies Logical Equivalence

13
13
15

20
22
33

34
34
36

37
40

10 Closure Conversion
10.1 Translation e

10.2 Fix vs. Recursive Functions

11 Language Conversion
11.1 Over and Back
11.2 Inverses . . . o o o v v v e e
11.3 The Back Relation
11.4 The Over Relation

11.5 Translation Equivalence oo

12 Erasure
12.1 Static Erasure

12.2 Dynamic Erasure L

13 Equivalence Preservation

53
93
54

55
95
95
63
73
83

94
94
97

101

1 Languages

1.1 Source Language

Tu=a|unit |int |7 X7 |7 = 7| Va.7 | Ja.T

ex=0 |n|epe|ifz(eee) | x|{ee) | me|fun f(x:7).e|ee|Aae|e[T]
| pack[r’, e] as Ja.7 | unpack|a,z] = eine

pr=t ||

Fe=-|Tz:7

A=A«

1.2 Target Language

To=qa|unit | int |7 X7 | 7= 7| Va7 | Ja.r

ex=0 |n|epe|ifz(e,ee) | x| (e e) | me|fun f(z:7).e|ee| Aa.e| e[r]
| pack[r’, e] as Ja.7 | unpack|a,z] = eine

pr=t| |

Fe=-|Ta:7

A=A«

As a shorthand, we write Az : 7.e to stand for fun f(z : 7).e when f is not used in e (meaning
that = : 7 b e : 7/, assuming otherwise closed terms). Similarly, we write Az : T.e to stand for
fun f(z : 7).e when f is not used in e (meaning that x : 7 - e : 7/, assuming otherwise closed
terms).

1.3 Combined Language

Tu=c«a|unit |int |7 X7 | T =7 |7=7 |V | Ja.T

ex=0 |n|epe|ifz(e,e,e) | x| (e,e) | me|fun f(z:7).e|ee|fun f(z:7).e| e e
| Aae | e[r] | pack[r’, ¢] as .7 | unpack|a,] = eine

pu=+]—|x

Fe=-|Tz:7

A=A«

2 Combined Statics

2.1 Types

Dunait Dint

A F unit type A | int type

Al 1 type AF mtype

Dvar pair

Ao atype A7 X T3 type

Al 11type AF motype AF 7 type Al mtype

AF 71 — mtype Dfun A+ T = mtype Decfun

A ok Ttype A ol Ttype ,

A vartype 7N RFTartype Devists

2.2 Terms
. I(z) =7
A;TF QO :unit Tunit ATz T Tvar
T A;T'Fep:int A;T'Fes:int Tint

A;T'Fn:int nt A;TFerpes:int mntop

A;THep:int A;Tkes:7 AlbFeg:T
AT+ ifz(ep,es,e3): 7

Tifz

AbFTtype AT, f:ir—7 0:7ke:T ATFer:7r—=7 ATkey:T
; T fun 7 Tapp
A;TFfun f(x:7)e:7—> 7 A;Thepeg:T
AFr1type Ajf:r =7 x:mhe:7 ATFer:7=7 ATkey:T
S— - Tcefun ’ — Tccapp
A;THfun f(x:T)e:T7=7 A;THeg e 7

ATke i ATkery:m A;The:m xm i€{l,2}

Tpai i
A,Fl— <€1,€2> 1T X T parr A;FI—WZ'GZTZ' TpTO]
Aa:Tke:T AT Ee:Var A;TE7 type T
a
AT F Aae s Vaur Ttlam AT Ee[r'] |7 /alr PP

AF 7' type A,abrtype A;T'kFe:[r/a]r
A;T F pack[r’, e] as Ja.7 : T

Tpack

A;Tker:dan AoTl,z:mFe:mm AF mtype

T k
A;T F unpack|a, z] = e;iney : 1o e

The statics are the same for the source language, except without rules Dccfun, Tcefun, and
Tccapp. We also say that A;T" Fg e : 7 to indicate that e can be typed at 7 in the source language.

The statics are the same for the target language, except without rules D fun, T fun, and Tapp.
We also say that A;I" Fp e : 7 to indicate that e can be typed at 7 in the target language.

Clearly if either A;T'Fge:7or A;T'Fpe: 7 then A;I'F e : 7, in the combined language.

3 Combined Dynamics

3.1 Values

eirval egval

— ; ; Vpair
O val Vunit nval Vit (e1,ea) val P
V fun — Veefun
fun f(x:7).eval / fun f(z :7).eval
— Vil cval Vpack
Aa.eval @M pack[r’, e] as Jo.7 val
3.2 Evaluation
e1 > € e > el _
! /1 Eintop: 2 2 - Eintop mpna =N pio
e1pes— €jpes nipes — nipeh nipng — n D3
e1 > €
: ! 7 Eifz
ifz(ey, e, e3) — ifz(e), ea, €3)
= . n#0)
- n=0 Eifzo - 7 FEifzg
ifz(n,eq, e3) — eo ifz(n,eq, e3) — e3
e — 6/1 E €2 — 6/2 E
—— Ea a
e1 ez €} ey PP (fun f(z:7).e) ea— (fun f(z:7).e) €} PPz

eg val Eapps
(fun f(z:7).e) e2 — [fun f(z:7).e/f][e2/x]e

€1 6,1 E 217 6/2 FEccapp
- = =< cca — ~ — ~ 2
e1 eg > €] es PP (fun f(z:7).e)"e2 — (fun f(x:7).€) €l
eg val
— — — FEccapps
(fun f(xz:7).e)"eq > [fun f(x:7).e/f]lez/x]e
e €}) epval e+ €)
Epairy Epairy
(e1,e2) = (€], ea) (e1,e2) = (e1,€h)
/) 1€4{1,2} ejval egval)
e € pogi; {1,2} e 2val b o
;€ — ;e 7Ti<€1;€2> — €;
e e
FEta Et
el efr] T PPY Aave)[r] = [r/ale P2

err e
Epack
pack[r’, e] as Ja.7 > pack[r’, €| as Ja.T b

e1 — €}
- e Funpacky
unpack|a,] = e; ineg — unpack|o, x| = €] iney
eval FEunpacks

unpack|a, z] = (pack[r’, €] as Ja.7) ines — [T/ /a]le/x]es
The dynamics are the same for the source language, except without rules Vecfun, FEccappy,
FEccapps, and Eccapps.

The dynamics are the same for the source language, except without rules V fun, Fappi, Eapps,
and Eapps.

3.3 Termination

Definition An expression terminates (or halts) if it steps to a value after a finite number of steps.
With the introduction of recursive functions, we can now have divergent expressions. We define
termination, written e |, as follows:

eval e €|

el Huoal el

Hstep

For simplicity, from now on consider v to be an expression e such that eval.

Also, for convenience we define the symbol L to be any term that does not terminate. An example
of this is

1 = (fun f(x:unit).f)0

This clearly does not terminate, as it steps to itself.

4 Contexts

0: (A;T>7) ~ (AT >7) Cid

C:(A;T'>7)~ (A T">int) ATV Ee:int
Cpe: (A;T>7)~ (AT >1int)

Cintopy

C:(A;T7)~ (A Tpint) ATV Fe:int
epC: (AT >7) ~ (AT > int)

Cintops

C:(A;T7)~ (AT >int) ATVEes:7 AT Feg:7
ifz(C,e9,e3) : (A;T'>7) ~ (AT > 77)

CifZl

AiT'Fepiint C: (A T7) ~ (AT 1) AT Fes: 7/

Ci
ifz(el,C,eg) : (A;FDT) ~ (A,;FIDT/) ifz
AT"Fep:int C: (A Tp7)~ (AT 7) AT bFeg: 7! Cif
ifz(e1,e2,C) : (AT 1) ~ (AT > 1) vz
C:(ATor)~ (AT fimp = o,z >1e) AR 1type cf
fun f(z:71).C: (AT 1)~ (AT >1 — 72) un
C:(ATor)~(Ajf:im = m,z:m>1) AL 7 type
— Cecfun
fun f(z:71).C: (AT 7))~ (AT >1 = 7)
C:(AsTo1)~ (AT — 1) ATVbEe:n
Ce: (A7)~ (AT b1) app1
C:(AsTor)~ (A T'pm) AT'bFe:n —m
. . LT Cappz
eC:(A;T>7)~ (AT b1o)
C:(AT>7)~ (AT b7 =) A’;F’l—e:nc
cea
Che: (AT o)~ (AT b ry) PP
C:(ATo7)~ (A T">m) AT'Fe:m =mn
C'ccapps

€C:(A;T>T)~ (AT b19)

C:(A;T7)~ (ATVpn) ATVbe:n
(C,e) : (A;TT)~ (AT b1 X T9)

Cpairy

C: (A7)~ (ATVpm) ATFe:n
(€,C) : (AT 7))~ (AT b1 X T9)

Cpairs

C:(A;Te7)~ (AT x1) i€{1,2}
miC: (AT 7) ~ (AT > 7)

Cproj

C:(A;To7)~ (A oy TV 1)
Aa.C: (AT 7) ~ (AT > Vaur')

Ctlam

C:(A;Tp7)~ (A TpVar) A'F71"type
Cl™"]: (AT 7) ~ (AT > [/ alr)

Ctapp

A'F7m"type Ajab1'type C:(A;T>7)~ (AT > [7"/alr)
pack[r”,ClasJa.7’: (A;T>7) ~ (AT > Fant’)

Chpack

C: (A7)~ (AT >3ar) Aol z:mbe:m A'Fmtype
unpack|a,z] = Cine: (A;T>7) ~ (AT 1)

Cunpacky

C:(A;Te7)~ (AayT x:mpm) AT Fe:Jar A'F mtype
unpack|a, z] = einC: (A;T>7) ~ (AT > 1)

Cunpacks

4.1 Context Composition

Lemma 4.1. If C: (A;T'>7) ~ (AT 7') and C': (AT > 7') ~ (A”;T" > 7"), then C'{C{o}} :
(AT 7))~ (AT > 7").

Proof. By induction over the context typing rules on C’.

Case for Cid

Assume that ' =0 : (A;T'>7') ~ (AT > 7') and C : (A;T>7) ~ (AT > 7). We know that
C{o} : (A;T>7) ~ (AT >7'), which is equivalent to o{C{o}} : (A;T>7) ~ (AT >7'), and
therefore C'{C{o}} : (A;T'>7) ~ (A;T' > 7'), as required.

Case for Cintopy

Assume that ¢’ = C"pe : (A;I">7') ~ (A”;T” > int) and C : (A;T>7) ~ (AT > 7). By
induction on C” we get that C"{C{o}} : (A;T'>7) ~ (A”;T”>int). Then by rule Cintop;, we have
that C"{C{o}}pe: (A;T'>7) ~ (A”;T”>int), which is equivalent to (C" pe){C{o}}: (A;T>T) ~~
(A”;T" > int), and so C'{C{o}} : (A;T'>7) ~ (A”;T" > int).

Case for Cintopsy
Essentially the same as C'intop; .

Case for Cifz;

Assume that ¢’ = ifz(C”, ez, e3) : (A;T'>7") ~ (A”;T">7") and C : (A;T>7) ~ (A TV>77). By
induction on C"” we get that C"{C{o}} : (A;T>7) ~» (A”;T" >1int). Then by rule Cifz;, we have
that ifz(C"{C{o}},e2,e3) : (A;T'>7) ~ (A”;T”>7"), which is equivalent to i£fz(C”, es, e3){C{o}} :
(A;T 1)~ (AT > 7"), and so C'{C{o}} : (A;T>7) ~ (A”; T >7").

Case for Cifzo

Assume that C' = ifz(e;,C" e3) : (AT >7) ~ (AT >7") and C : (A;T>7) ~ (AT >77). By
induction on C” we get that C"{C{o}} : (A;T>7) ~» (A”;T”>7"). Then by rule Cifz, we have
that ifz(e1,C"{C{o}},e3) : (A;T>T) ~ (A”;T"1>7"), which is equivalent to ifz(e1,C”, e3){C{o}} :
(A;T>7) ~ (A”;T" > 7"), and so C'{C{o}} : (A;T>7) ~ (A", T > 7").

Case for Cifzs
Essentially the same as C'ifza.

Case for C' fun

Assume that ¢’ = fun f(x : 7/).C" : (AT > 1) ~ (AT >7 = 7y and C : (AT >7) ~
(A";T">7"). By induction on C” we get that C"{C{o}} : (A;T>7) ~ (AT f o7 — 7, - 7>7)).
Then by rule C fun, we have that fun f(z : 77").C"{C{0o}} : (A;T>7) ~ (A”;T" > 7" — 7)), which
is equivalent to (fun f(z : 77).C"){C{o}} : (A;T'>7) ~ (A";T" > 7 — 74), and so C'{C{o}} :
(A;T 1)~ (AT > — 7).

Case for Cccfun

Assume that €' = fun f(z : 77).C" : (AT > 7)) ~ (A", T > 7/ = 74) and C : (A;T > 7) ~»
(A"; "> 7'). By induction on C” we get that C"{C{o}} : (A;T>7) ~ (Asf 1 = 1,27 >7)).
Then by rule Ceclam, we have that fun f(z : 7J).C"{C{o}} : (A;T > 7) ~ (AT 7] = 1Y),
which is equivalent to (fun f(z : 7/').C"){C{0}} : (A;T>7) ~ (A”;T">7! = 7f), and so C'{C{o}} :
(A;T 7))~ (AT > 7 = 7).

10

Case for Capp;

Assume that ' =C" e: (A;T>7) ~ (A"; T > 7)) and C : (A;T>7) ~ (A;TV>77). By induction
on C” we get that C"{C{o}}: (A;T>7) ~ (A”;T">7{ — 7). Since we know that A”;T" Fe: 7/,
by rule Cappi, we have that C"{C{o}} e : (A;I'>7) ~» (A”;T” > 74), which is equivalent to
(C" e){C{o}}: (A;T>T)~ (A";T" > 7)), and thus C'{C{o}} : (A;T>7) ~ (A"; T > 7).

Case for Cappo

Assume that C' = e C" : (A;T'>1") ~ (A”;T>71)) and C @ (A;T>7) ~ (AT >7"). By induction
on C"” we get that C"{C{o}} : (A;T>7) ~ (A”;T”>7{). Since we know that A”;T" Fe: 7 — 75,
by rule Capps, we have that e C"{C{o}} : (A;T' > 7) ~ (A”;T” > 7l), which is equivalent to
(e C"Y{C{o}}: (A;T>7) ~ (A”;T">7Y), and thus C'{C{o}} : (A;T>7) ~ (A";T" > 1Y)

Case for Cccapp;
Essentially the same as Capp;.

Case for Cccappo
Essentially the same as Capps.

Case for Cpairy

Assume that ¢’ = (C",e3) : (A;T 7)) ~ (A”;T" > x 1) and C : (A;T>7) ~ (AT > 7).
By induction on C” we get that C"{C{o}} : (A;T'>7) ~» (A”;T" > 7). Then by Cpairy we have
that (C"{C{o}},e1) : (A;T" > 7') ~ (A”;T" > 7 X 73), which is equivalent to (C”,es){C{o}} :
(AT > 7") s (A";T" b1 X T2), and thus C'{C{o}} : (A; T > 7') ~ (A”; T > 11 X T2).

Case for Cpairy
Similar to the case for C'pair.

Case for Cproj

Assume that C' = m,C" : (AT > 1) ~ (A”;T">7;) and C: (A;T>7) ~ (A TV > 7). By induction
on C" we get that C"{C{o}} : (A;T>7) ~ (A”;T" > 7 X 7). Then by Cproj we have that
mi(C"{C{o}}) : (A;T" > 7") ~ (A”;T" > 7;), which is equivalent to (m;,C”"){C{o}} : (A;TV>7") ~
(A”;T" > 1), and thus C'{C{o}} : (A;T">7") ~ (A";T" > 13).

Case for Ctlam

Assume that ¢’ = Aa.C” : (AT > 7)) ~ (A”; T > Var”) and C : (AT 7) ~ (AT > 7).
By induction on C” we get that C"{C{o}} : (A;T'>7) ~» (A”,o;T” > 7"). Then by Ctlam we
have that Aa.(C"{C{o}}) : (A";T'>7") ~ (A”;T" >Va.7”), which is equivalent to (Aa.C”){C{o}} :
(AT > 7))~ (AT > Va.r”), and thus C'{C{o}} : (A;T">7') ~ (A"; T > Va.r").

Case for Ctapp

Assume that C' = C"[n] : (AT 7)) ~ (AT > 7") and C : (AT > 7) ~ (AT > 7). By
induction on C” we get that C"{C{o}} : (A;T'>7) ~ (A”;T”>Va.7”). Then by Ctapp we have that
(c"{C{o}})[m] : (AT >7") ~ (A”;T" > 7"), which is equivalent to (C”[r1]){C{o}} : (A;T'>7') ~~
(A”;T">7"), and thus C'{C{o}} : (A;T">7") ~ (A";T" > 7").

Case for Cpack

Assume that C' = pack[r,C"|asJa.7” : (AT > 7)) ~ (A”;T" > Far”) and C @ (AT >7) ~
(A’;T" > 7'). By induction on C” we get that C"{C{o}} : (A;T > 7) ~ (A”;T" > [11/a]7”). Then
by Cpack we have that pack[r,C"{C{o}}|asJa.7" : (A;T" > 7") ~ (A”;T” > Ja.7”), which is

11

equivalent to (pack[ri,C"]asJa.7"){C{o}} : (A;TV>7') ~ (A”;T" > 3a.7”), and thus C'{C{o}} :
(AT > 1)~ (AT > Far”).

Case for Cunpack;

Assume that C' = unpack|a,z] = C"ine : (AT > 7)) ~ (AT > 7") and C 2 (AT > 7) ~
(A’;T" > 7'). By induction on C” we get that C"{C{o}} : (A;T >7) ~» (A”;T” > 3Ja.1y). Then by
Cunpack; we have that unpack|a,z] = (C"{C{0}})ine : (A";T' > 1') ~ (A”;T” > 7"), which is
equivalent to (unpack[a,z] = C"ine){C{o}} : (A;TV>7) ~ (A”;T”" > 7"), and thus C’{C{o}} :
(AT > 1)~ (AT > 7).

Case for Cunpacks

Assume that ¢’ = unpack|a, 2] = einC” : (AT > 7)) ~ (A”;T">7") and C : (AT 7) ~
(A, T > 7'). By induction on C” we get that C"{C{o}} : (A;T > 7) ~ (A", ;T z : 71 > 79).
Then by Cunpacks we have that unpack|o,z] = ein(C”"{C{o}}) : (AT > 7') ~ (A";T" > 77),
which is equivalent to (unpack|a,z] = einC”){C{o}} : (A; T > 7") ~ (A”;T" > 7"), and thus
C'{C{o}}: (A;T"> 1) ~ (A";T" > 7").

12

5 Contextual Equivalence

5.1 Definitions

Definition A complete program e is the Kleene approximation of a complete program e’, written
e<eé iffel =¢€ .

Definition Two complete programs, e and €, are Kleene equal, e ~ ¢, iff e | &€’ |. Equivalently,
ife<ée and € <e.

Clearly Kleene equivalence is reflexive, symmetric, and transitive and is thus an equivalence relation.

Definition Suppose that A;T F e : 7 and A;T + € : 7 are two expressions of the same type.
Then e contextually approximates e/, written A;T' e <€’ : 7, iff C{e} < C{e'} for every program
context C : (A;T'>7) ~» (->int). As a shorthand we just write e <, ¢’ if -Fe:7and -+ e : 7.

Clearly this is transitive and reflexive.

Definition Suppose that A;T' e : 7 and A;T F € : 7 are two expressions of the same type. Two
such expressions are contertually equivalent, written A;T e = e ¢ 7, iff C{e} ~ C{€'} for every
program context C : (A;T'>7) ~ (- >int). Equivalently, if A;TFe<e' :7and A;THe <e:r.
As a shorthand we just write e =, ¢’ if - e:7and - €' : 7.

Definition A family of equivalence relations is a congruence iff it is preserved by all contexts. Or
equivalently, if A;T'F e&e : 7, then ATV = C{e} EC{e'} : 7/ for all contexts C : (A;T>7) ~~
(AT > 7).

Definition A family of equivalence relations is consistent iff - - e& e : int implies e ~ ¢’.
Clearly contextual equivalence is both a congruence and consistent.

Definition A closing substitution ~« for the context I' = x1 : 71, ..., x5 : T, is a finite function that
assigns the closed expressions e : 71, ...,y : T, t0 X1, ..., Ty, respectively. We write J(e) for the
substitution [e1/z1]...[en/zn]e, and write v : T’ to mean that if = : 7 occurs in I', then there exists
a closed expression e : 7 such that y(z) = e. We write v =p +/, where v : I" and 4/ : T, to say that

Y(2) Zre) v ().

Lemma 5.1. If e &, ¢/, then e ~ €'

Proof. Define the context C = (Ax : 7.0) o, where 0 is the integer zero. Clearly C : (->7) ~» (->int).
Since we know by assumption that e =, ¢’ : 7, by definition we get that C{e} ~ C{e’}, which is
equivalent to

Az :7.0) e~ (A\z: 7.0) €

Suppose that e does not terminate. Then clearly (Az : 7.0) e does not terminate either, by rule
Eapp;. Thus by the above, (Az : 7.0) €’ does not terminate. Then it must be the case that e’ does
not terminate, as otherwise (Ax : 7.0) €’ |, and we know that it does not.

Suppose that e |. Then clearly also (Az : 7.0) e |. Again by the above, this means that (Ax :
7.0) €’ |. Finally, by rule Eapps, it is clear that e |, as otherwise (Az : 7.0) ¢’ would not terminate.
Therefore we have that e ~ ¢/, as desired. O

13

Corollary 5.2. If e =, ¢/, then C{e} ~C{e'} for all C: (->7) ~~ (-> 7).

Lemma 5.3. If A, ;T FeXe : 7 and 7/ type, then A;[7' /o]l F [r'/ale 2 [7'/ale’ : [7'/a]T.

Proof. Let C : (A;['/a]T'> [7//a]T) ~» (> int) be a program context. We need to show that

C{[r'/ale} ~ C{[r'/ale’}

Since C is closed, this is equivalent to

[7'/a]C{e} ~ [r'/alC{e'}

Now define that context C' = (Aa.C{0})[7'] : (A, ;T'>7) ~ (->int). By assumption we know that
C'{e} ~ C'{e'}. However, C'{e} ~ [7'/a]C{e} and C'{e’'} ~ [r'/a]C{e}, so therefore C{[7'/ale} ~
C{[7"/a]e'} as desired. O

Lemma 5.4. If ;T Fe>e¢e :7and v: T, then y(e) =, (e'). Also, if ¥ =p +/, then (e) =, 7'(e)
and Y(e) =, 7/(€'), as well as y(e) =, 7'(¢)

Proof. Let C : (->7) ~» (->int). Since - - F(e) : 7 and - F (/) : 7, we are to show that
C{7(e)} = C{7(¢')}. Define C; to be the context

(Az1 : T ATy T0) (e1) ... (en)

where I' = 1 : 71, ..., : 7, and y(z1) = €1, ..., ¥(zp) = ey. Clearly C; : (I'>7) ~» (->7). Define the
context D to be C{C1{o}}. By Lemma 4.1, D: (I'>7) ~» (- >int). Therefore, since I' e = ¢’ : 7,
we know that D{e} ~ D{e’}. But by construction, D{e} ~ C{7(e)} and D{e'} ~ C{7(¢')}, so
C{7(e)} ~C{7(€¢)}. Since C is arbitrary, we have that F(e) = 7(¢’).

Now, define Cf to be the context

ATy : 71 AT 72:0) (h) o (€)

where +'(z1) = €/, ...,7(zn) = €},. Defining D’ to be C{Ci{o}}, by the same reasoning as above
we can get that D'{e} ~ D'{e'} as well as 7'(e) = 7/(¢/). Assuming that v = 4/, we have
by congruence that D{e} =i, D'{e} and D{e'} =i, D'{e’}. By the definition of contextual
equivalence and applying the identity context, we have that D{e} ~ D'{e} and D{e'} ~ D'{¢'}.
By the same logic as above, we can show that J(e) =, 7/(e) and F(e’) =, 7'(¢'), as desired. Since
we also know that D'{e} ~ D'{€'} as mentioned above, by transitivity of Kleene equality and using
the fact that D{e} ~ D'{e}, we get that D{e} ~ D’{€’}. This implies that Y(e) =, 7'(¢/) by the
same reasoning as above, as desired. O

Lemma 5.5. f A;TFe<¢e :7and C: (A;T>7) ~ (AT >7), then ATV - C{e} <C{e'}: 7.

Proof. Let C" : (A";T>7') ~» (->int) be an arbitrary context and C be defined as above. Define
a new context C” = C'{C{o}} : (A;T>7) ~ (->int) by Lemma 4.1. Then, since A;TFe <¢€':7,
we know that C"{e} < C"{€}, or equivalently, C'{C{e}} < C'{C{e'}}. But since C' was arbitrary,
we have that A; TV C{e} < C{e'} : 7/, as desired. O

Corollary 5.6. If TFe=¢' :7and C: (T'>7) ~ (AT > 77), then ATV - C{e} 2 C{e'} : 7.

Lemma 5.7. (Unproven Assumption) If A;T'Fe: 7 and e — €/, then A;T Fe e : 7.

14

5.2 Substitutivity
Lemma 5.8. If A;T' ke <ey:7 and A;T z: 7' Fe: 7, then A;T F [e/x]e < [ea/x]e: 7.
Proof. By induction on the structure of e.

Case for e = ()
If e = O, then we just need to show A;T' - [e1/z]() < [e2/x]() : unit, which is equivalent to
A;T'E O < O :unit, which is trivially true.

Case for e =z
If e = x, then we just need to show A;T F [e1/x]z < [ea/x]x : 7, which is equivalent to A;T' - e; <
e : 7, which we already know by assumption (and since 7 = 7/ in this case).

Case for e =n
If e = n, then we just need to show A;T' [e;/z]n < [ea/x]n : int, which is equivalent to
A;T'Fn <n:int, which is trivially true.

Case for e = €| pe)
If e = €] peh, then we just need to show A;T' F [e1/x](e] peb) < [e2/x](€) peh) : int, which is
equivalent to

AT E ([er/aler) p(ler/xles) < ([ea/xler) p(lea/x]es) « int

By induction, we get that A;T" F [eg/x]e] < [ea/x]e] : int and A;T F [e1/z]el, < [ea/z]e), : int.
If we define the context C; = op([e1/z]e}), then we can apply Corollary 5.6 to A;T" F [e1/x]e] <
[ea/x]e] : int and get that

ATk ([ex/x]er) p(ler/xley) < ([e2/xlel) p([er/a]ey) : int

Similarly, define Co = ([e2/x]e}) po and apply Corollary 5.6 to A;T' F [e1/z]el, < [ea/z]€l : int to
get that
AT E ([ea/]eh) pl[er/x]eh) < ([e2/x]e)) pl[ea/x]eh) : int

Finally, by transitivity, we get the desired result
AT ([er/aler) pller/xley) < ([e2/xle)) p([e2/x]e) : int

Case for e = ifz(e], €, €})
If e = ifz(e], €5, €), then we just need to show A;T' - [e1/z]ifz(e], €h, €4) < [ea/x]ifz(e], €5, €f) :
7, which is equivalent to

AT F ifz([er/z]el, [er/x]eh, [er/aley) < ifz([ex/a]e), [e2/a]ey, [ea/x]es) : 7

By induction on the subterms, we get that A;T" F [e1/z]e] < [ea/z]e] : int, AT + [e1/z]el, <
[ea/z]el : 7, and A;T F [eg/x]es < [ea/x]es : 7. Define the context C; = ifz(o, [e1/x]e), [e1/x]eh).
Applying Corollary 5.6 to A;T' F [e1/x]e] < [ea/z]e] : int, we get that

A;T = ifz([er /)€l [e1/x]€h, [e1/x]el) < ifz([ea/x]e], [e1/x]eh, [e1/x]eh) : T

Again using Corollary 5.6 but on A;T' F [e1/z]e, < [ea/x]el : int and the context
Co = ifz([ez/x]€), 0, [e1/x]€h), we get that

AT = ifz([ex/xley, [e1/x]es, [e1/x]e) < ifz([ez/x]el, [e2/x]eh, [e1/a]el) : T

15

Finally, applying Corollary 5.6 to A;T' F [e;/z]ef < [e2/x]ef : int and the context
Cs = ifz([ex/x]€], [e2/x]€h, 0), we get

A;T F ifz([ea/z)e], [ea/x]eh, [e1/x]es) < ifz([ea/z]e), [ea/T]ey, [ea/x]el) : T
Then using the transitivity of contextual equivalence, we get that
A;T F ifz([er/z)e], [e1/x]eh, [e1/x]es) < ifz([ea/z]e), [ea/T]ey, [ea/x]el) : T

Case for e = fun f(y: 7).¢/
If e = fun f(y: 7').€/, then we just need to show

AT ey /x](fun f(y: 7').¢') < [ea/x](fun f(y:7).e'): 7" =7

which is equivalent to A;T' - fun f(y : 7/).[er/z]e’ < fun f(y : 77).[e2/x]e¢’ : 7 — 7. By induction
we know that A;T, f: 7 — 1,y : 7' b [er/z]e < [e1/z]e’ : T, so we can apply Corollary 5.6 to this
with the context C = fun f(y:7).0: (AT, f: 7 = 1,y: 7' >7) ~ (A;T > 7" — 7) to get that

AT Ffun f(y:7).Jer/x)e < fun f(y:7').Jex/z]e’ : 7/ — 71

Case for e = €] €}
If e = €} e, then we just need to show

AT F [er/z](e) €3) < [ez/](e) €5) : 7
which is equivalent to
AT F ([er/z]er) ([er/zles) < (le2/zlel) ([e2/aley) : 7

By induction we get that A;T F [eg/x]
Applying Corollary 5.6 to A;T' - [eq/x]
that

lea/z]e) : 7" — 7 and AT F [e1/x]e, < [ea/x]eh = T'.

el <
ey < lea/x]€} : 7 — 7 the context C; = o ([e1/x]eh), we get

AT E ([er/aler) ([er/xley) < ([ez/z]er) ([er/x]ey) = 7

Similarly, applying Corollary 5.6 to [e1/z]e}, < [ea/z]€} : 7/ and the context Co = ([e2/x]€)) o, we
get that
AT E ([e2/a]eh) ([er/xles) < m([ez/xler) (lez/zles) = 7

Thus by transitivity, we have the desired result:
AT F ([er/zler) ([er/ales) < ([e2/xlel) ([ez2/xley) = 7

Case for e = fun f(y:7).¢
If e =fun f(y:7').€/, then we just need to show

AT F [ey/z](fun f(y : 7').€') < [ea/a](Fun f(y: 7).€/) : 7' =1
However, since this is a closed function, we know that this is equivalent to
AT Hfun f(y: 7). <fun f(y:7)e 7 =1

which we already know by reflexivity.

16

Case for e = €| ¢}
If e = €| 7€), then we just need to show

AT F [ea/a)(eh7eh) < [ea/al(eh7eh) : v
which is equivalent to
AT F ([er/z]er)([er/z]es) < ([ea/z]er) ([e2/x]es) : 7

By induction we get that A;T' F [e1/x]e] < [ea/z]e] : 7/ = 7 and A;T F [er/x]ey < [ea/x]el : 7.

Applying Corollary 5.6 to A; T+ [e1/x]€] S_ [ea/z]e} : 7/ = T the context C; = o™ ([e:/x]e’z), we get
that

Similarly, applying Corollary 5.6 to A;T'F [e1/x]e
Cay = ([e2/x]€}) 0, we get that

AT F ([ea/z]er)([er/z]er) < ([ea/z]er) ([e2/z]es) : 7
Thus by transitivity, we have the desired result:

AT ([ex/aler) ([er/xler) < ([e2/x]et) ([ea/a]er) = 7

AT E ([ex/]eh) ([er/zles) < ([ez/xler) ([er/x]eh) = 7
h <

[ea/z]€l : 7/ and the context

Case for e = (¢}, €))
If e = (€], €}), then we just need to show

AT F [er/x]{e], eh) < [ea/x]{€], eh) : 71 X To
which is equivalent to
AT F ([er/xley, [er/x]eq) < ([ea/xel, [e2/x]eq) 1 11 X T2

By induction we get that A;T F [e1/z]e] < [ea/z]e] : 1 and A;T F [er/x]el, < [ea/x]e : To.
Applying Corollary 5.6 to A;T'F [e1/x]e] < [ea/x]e] : 71 the context C1 = (o, [e1/z]e)y), we get that

AT+ ([er/aler, [er/a]es) < ([ez/x]el, [er/ales) - 71 x 7

Similarly, applying Corollary 5.6 to A;T' F [e1/z]el, < [e2/x]ely : T2 and the context
Co = ([ea/x]€], 0), we get that

AT ([ez/]ey, ler/aley) < ([ea/xlel, [ea/ales) : 1 x 7
Thus by transitivity, we have the desired result:
ATk ([ex/]ey, ler/aley) < ([ea/alel, [ea/ales) : 1 x 7
Case for e = m;e
If e = m;€’, then we just need to show
AT ey /x]me’ < [ea/z]mie’ : 7

which is equivalent to
AT F mifer/z]e’) < mi[ea/x)e)) = 7

By induction we get that [e;/z]e] < [e2/x]e} : 71 X 2. Applying Corollary 5.6 to this with the

context C = m;0, we get the desired result

AT = mi(fen/x]e’) < mi[ea/x)e)) = 7

17

Case for e = Aa.e/
If e = Aa.€/, then we just need to show

A;T F [er/x]Aace’ < [ea/z]Aae’ : Va.r’

which is equivalent to
A;T F Aacler/z]e’ < Aaufes/z]e : Va1’

since neither e; nor e; depend on a. By induction we get that A, o; T F [e1/x]e’ < [eg/x]e’ : 7.
Applying Corollary 5.6 to this with the context C = Aa.o, we get the desired result

AT+ [er/x]Aace’ < [ea/z]Aae : Va.r’

Case for e = €'[7]
If e = ¢/[7'], then we just need to show

AT [er/2)(e'[r]) < [ea/](€'[]) < [7'/alr

which is equivalent to
AT F ([er/2]e)[7'] < ([ea/z]e)[r'] : [7'/alr

<
By induction we get that A;T' F [e1/z]e’ < [ea/x]e’ : Va.7. Applying Corollary 5.6 to this with the
context C = o[7'], we get the desired result

AT F ([er/2]e) 7] < ([ea/z]e) ']« [7'/alr
Case for e = pack[r/, ¢/ as Ja.7
If e = pack[7’/, ¢/] as Ja.7, then we just need to show that
A;T + [e1/z](pack[r, €] as Ja.T) < [e2/z](pack[r’, €| as Fa.T) : JaT
which is equivalent to
A;T = pack|[r, [e1/x]€/] as Fa.7 < pack[r, [ez/x]e/] as Ja.7 : FaT

By induction we get that A;T = [e1/x]e’ < [ea/z]e’ : [7'/a]r. Applying Corollary 5.6 to this with
the context C = pack|[7’, 0] as Ja.7, we get the desired result

A;T = pack|[r’, [e1/x]€'] as Fa.T < pack[r, [e2/7]e¢/] as Ja.T : FaT
Case for e = unpack|a, y] = €] in¢€)
If e = unpack|a, y] = €} ineh, then we need to show that
A;T I [e1/x](unpack|a, y] = €] ineh) < [es/z](unpack|a, y] = €] ine)) : 7
which is equivalent to
A;T + unpack|a, y] = [e1/x]e] inle1/z]ey < unpack|a,y] = [e2/z]e] inlea/z]eh : T

By induction we get that A;T' F [e1/z]e)] < [ea/x]e] : Fam and A, ;T 2 2 1 - [e1/x]ely < [ea/x]€)
7. Applying Corollary 5.6 to the first of these with the context C = (unpack|c, y] = oin[e;/x]eh),
we get that

A;T - unpack|a, y] = [e1/x]€] inle; /x]e, < unpack|a,y] = [ea/z]e] inle1/z]e) : T

Applying Corollary 5.6 to the second inductive result with the context
C = (unpack|a, y| = [e2/z]€e] ino), we get that

A;T - unpack|a, y] = [e2/x]€] inle; /x]e, < unpack|a,y] = [ea/z]e] inles /)€, : o

The desired result then follows from the above two results by transitivity.

18

Corollary 5.9. If A;TFe; Xeg: 7 and A;T,x: 7' Fe: 7, then A;T F [eg/x]e X [ex/x]e : T.

19

6 Compactness

Definition Define the “unwindings” of a recursive function f = fun g(z : 7).e as

fun’ g(x : 7).e = fun g(z : 7). 1

fun™! g(x: 7).e = fun g(z : 7).[fun’ g(z : 7).e/gle

As a shorthand, we write f' = fun’ g(x : 7).c and f¥ = f.

Similarly, define the “unwindings” of a recursive closure-converted function f = fun g(z:7).e as
—0 —

fun g(x:7).e=fun g(z:7).L

fun' g(z:7).e = fun g(z : T)[f/l—l?ll g(x :7).e/gle

As a shorthand, we write f? = Fun' g(z:7).eand f* = f.

Clearly in either case f9 diverges by definition, and f? behaves as a function that can only be called
1 times before looping forever. Note that when using f, unless specified, it could be referring to
either type of function.

Also, as another shorthand, we write e/l = [f°/w]e for some -+ f:7 = 7 and w: 7 — 7' ke,
where o can be filled by w or any 1.

Lemma 6.1. (Unproven Assumption) For all ' e : 7, I' - L < e : 7 for some L such that
'ELl:7.

Lemma 6.2. For a given function f = fun g(x : 7').e or f = fun g(x : 7').e and all i, j such that
0<i<j, f' <, f

Proof. We proceed by induction to first show that for all 0 < i, f <, fi*+1.

Case for i =0
Suppose that f = fun g(x : 7').e, with - b f : 7/ — 7. By their definitions, we know that
fO = fung(x : 7). L and f! = fun g(x : 7').[fun g(x : 7').1/gle. By Lemma 6.1 we know
that

g: 7 —>7mr:7TF L<[fung(z:7).L/gle:T

Then using the context C = fun g(z : 7’).0, where C : (¢ : 7/ = 1,z : 7'>7) ~ (D7 = 7),
we can apply Lemma 5.5 to get that

C{L} <rr C{[fun g(x : 7). L/gle}
which is equivalent to
fun g(z : 7). L <y, fun g(z : 7).[fun g(z : 7). 1L /gle

which is the same as f0 <,_,, f! and is what we wanted to show.
The other possibility is that f = fun g(x : 7).¢, with - F f : 7/ = 7. By their definitions, we
know that f® = fun g(z : 7). L and f! = fun g(x : 7’).[fun g(x : 7).1/gle. By Lemma 6.1
we know that
/ / i /
g:7=7x:7FL<[fung(z:7).L/gle:T

20

Then using the context C = fun g(x : 7/).0, where C: (g: 7/ = 1,2 : 7> 7) ~ (b7 = 7),
we can apply Lemma 5.5 to get that

C{L} <prr C{[fun g(x: : 7). L /gle}
which is equivalent to
fun g(z : 7). L <per fun g(az : 7). [fun g(z : 7). L/gle
which is the same as O <., f! and is what we wanted to show.

Case for i > 0
We want to show that f* <, f**1. There are two cases to consider.
If f = fun g(z : 7).e, then clearly by definition f* = Az : 7.[f*"1/fle and similarly fi*! =
Az : 7'.[f"/fle. By induction we know that fi~! <, f’ so by Lemma 5.8 we get that
[fi=1/fle <; [f!/f]e. Then using the context C = \x : 7.0, we can apply Lemma 5.5 to get
that A ‘

e [fT fle <0 Aa T f fle
and thus we have the desired result, that f* <, f+1.
If f= fun g(z : 7).e, then clearly by definition f? = AT 7.[f7!/f]e and similarly fit! =
Ax : 7'.[f*/fle. By induction we know that fi*/l\ <, f% so by Lemma 5.8 we get that
[fi=1/fle <; [f!/f]e. Then using the context C = \x : 7.0, we can apply Lemma 5.5 to get
that R ' R ‘

e 7 [fle < Az T fY fle
and thus we have the desired result, that f <, fi*!.

Now we want to show that for all 4, j such that 0 < i < j, f* <, f7. We proceed by induction on j.

Case for j =1
Trivially true, as f* = f7, so clearly f* <, fJ.

Case for j > 1
By induction we get that f* <, f/~!. By our proof above we know that f/=! <. f7, and so
by transitivity we know that f! <, f7.

O]

Corollary 6.3. For a given function f = fun g(z : 7/).e or f = fun g(z : 7/).e and all i > 0,
fi <. fw.

Lemma 6.4.

(1) f=fung(x:m)dandw:m - mbte:r
(2) f=fung(z:m)eandw:m =mbke:r

For all 4, j such that 0 < i < j, if either (1) or (2) hold, then e/l <, e/l

Proof. Follows immediately from the above Lemma 6.3 and Lemma 5.8. 0

21

6.1 Simulation

Lemma 6.5.

(1) f=fung(x:7).e where - f:m - mand=w:7 — 1
(2) f=fung(z:m).e where - F f:m=>mnand T =w:m = n

Given either (1) or (2) from above, and that I' - e : 7 and e/[*) % v (where 7 indicates that it
takes exactly 7 steps), then 3j,¢’ such that T : 7, v = v'/[*] and Vk > j.ef/lF] > ¢/ /lk—J]

Proof. By induction on the length of ef®! % ¢, with an inner induction on the structure of e.

Case for i =0
In this case, it must be that e/l val. There are a few cases for this:

Case for e = w

We must consider this case because e has w unbound in it, and we are substituting a value
in for w. Thus we have that e/] = f* =y and so e/¥) = f¥. Let j = 0 and v/ = w. There
are two cases based on the two possibilities mentioned at the beginning, (1) and (2).

If (1) is the case, then we have that v = f%¥ = vl ag desired. Also, for some k, v'/F=il =
V'IE = fun® g(z : 71).¢/, as well as e/lF = fun® g(z : 7).¢/. Thus, since v"/F=7 = /[,
clearly v/flk=J] <rysmy €] (%] for all k, since k was arbitrary. Thus the result holds in this case.

If (2) is the case, then we have that v = f¥ = ¢/f (] as desired. Also, letting k be arbitrary,
=3l = o/ f]) = Fan” g(x)¢, as well as eflF] = fun” g(x : 71).¢. Thus, since v'/lF—7] =
el [k], clearly o' f k=3 <o eflk for all k, since k was arbitrary. Thus the result holds in this

case.

Case for e = ()
In this situation, e/l = () = v. Pick j = 0 and v/ = () and we get that v = () = o/f,
Clearly I' - v : 7. Also, for arbitrary 0 < k, o'/l = () = efl¥| and thus o'+ <5 fF].

Case for e =n
In this situation, e/} = n = v. Pick j = 0 and v/ = n and we get that v = n = v/fl¥],
Clearly '+ v/ : 7. Also, for arbitrary 0 < k, v//F=3] = n = e/¥ and thus v'F—J1 <, efIF],

Case for e = (v1, v2)

Since ef[*] 0 ¢, eflw] = 4. Pick j = 0 and v = e, which is a value since e val by what we
know above. We already know that T'F v/ : 7, and clearly e/ = o/flv] = 4. For j = 0 <k,
since e = v/, clearly eflFl = /fIKl = /flk=i] g0 o/fk=3] < efIK],

Case for e = fun h(x : 7').¢/
Since /¥l 50 4 e/l = . Pick j = 0 and v/ = e. We already know that T' - o/ : 7.

Suppose j = 0 < k. We just need to show that v'T=il < eflHl which we know because
eflkl — /K] — o flk=3]

Case for ¢ = fun h(z : 7').¢/
Since el 0 ¢, effwl = 4. Pick j = 0 and v/ = e. We already know that ' - v/ : 7.

Suppose j = 0 < k. We just need to show that v'flk=il < efIFl which we know because
eflk] — oIkl — o/ Flk—3]

22

Case

Case for ¢ = Aa.¢/
Since efl*! =0y, efl¥l = ¢, Pick j = 0 and o/ = e. We already know that I' + o/ : 7.

Suppose j = 0 < k. We just need to show that v/f*=31 <_ eflfl which we know because
eftkl — /IRl — o flk=3]

Case for e = pack[r/, ¢/ as Ja.T
Since efl®] =0 o, efl¥l = . Pick j = 0 and o/ = e. We already know that ' + o/ : 7.

Suppose j = 0 < k. We just need to show that v"/[F=31 <_ efIkl which we know because
efTkl — o/ fIk] — o flk=3]

for i >0

Case for e =ejpes
This is where efl*] = e{[w]peg[w} —? v. By Tintop, we know that I' F e; : int and I' -
ez : int. By our outer induction (on the length of the evaluation) on I' F e; : int and

e{[w] % vy, since iy < i, we get that there exist ji,v] such that T' F o} : int, vy = lef[w]’
and for all j; < k, v;f k=] <int e{ [k}. Similarly, we get by induction on I' F es : int and

eg[w] 2 vy, we get that there exist jo,vh such that T' F vh @ int, vy = vlzf[w}

jo < ky ol < el

, and for all

However, since v1 : int, we know v; = n; = v;f] v] for some ny. Similarly, for some
ng, we get that vo = ng = U/Qf[w} = vé. This means that for j; < k, n1 <int e{[k} and for

g2 < k, no <int eg[k]. By FEintops, we get that ni pne +— n, where nypne = n. Now pick

j =71+ Jj2 and v' = n. We already know that I' - ¢’ : int, since n : int. It is also clear that
v =n =0 Suppose j < k, we want to show that v'/IF=7 <; . e/lFl. But v'/F=3l = n, so
we just need to show that n <jp eflH,
Since nipng +— n, by Lemma 5.7 we get that n <iyx nipne. Now define the context
Co =opng: (->int) ~» (->int). Then since 11 <ing e{[k] because j; < j < k, we can apply
Lemma 5.5 to get that
k

n1pne <ing 6{[]Pn2
We can similarly apply Lemma 5.5 to the fact that no <jp¢ eg k] since jo < j < k, using the
context C; = C{e{[k] po}: (->int) ~» (->int) to get that

A < [l

So by transitivity, we get that
k k
n1PN2 Sint e{[]peg[]
which is equivalent to 4
(n1pn2) 79 <ipp (e1pea)/™

as desired.

Case for e = ifz(eq, €2, €3)

This is where efl¥] = ifz(e{[w],eg[w],eg[wl) ' v. By Tifz, we know that ' - e; : int,
I''key:7and I' - e3 : 7. By induction on the length of the evaluation, we get that for
e{[w] % vy, there exist ji,v] such that I' F v} : int, v; = v’lf[w}, and for all j; < k,
viﬂk*jl] <int e{[k]. Let k be such that j; < k, and define the context

Cy = ifz(o, eg[k],eg[k]) c(+>int) ~ (> 7)

23

Using this context to apply Lemma 5.5 to vif k=] <int e{ [k] from above, we get that

ifz(v;f[k*jl]’ eg[k]7 eg[k}) <, ofF]

Now, since v1 : int, we can case on its value. There are two cases that we consider: v; = 0,

and vy # 0.

If v1 = 0, then we know that ifz(vy, eg[w], eg[w]) — eg[w] by rule Eifzs. We can then
induct on the evaluation eg] iz v = v, which tells us that there exist jo, v} such
that T' - vé 1T, Vg = v;f[w], and for all k such that jo <k, v;f[k_”} <, eg[k}.

Pick v' = v} and j = j1+j2. We already know that I' - v : 7, and since v = vg, we have

flw]

that v = v9 = vé = o/f[*], Now suppose we have k such that j = j;+j2 < k. Defining

ko = k — j1, we know by our application of induction above that véf ke=gal eg [ka],

This is equivalent to ‘ A

U;f[k‘—J] <, eg[k—h]
However, by Lemma 6.4, we know that eg[k_m <; eg[k}, so by the transitivity of
contextual approximation we have that

I3 < S

We know that v] = 0 since v; = 0, so viﬂk*jl] = 0. Thus

f1K]

BN I (LI

ifz , €5

and so by Lemma 5.7 we know that

o < sga(o] (I 10

Now by transitivity, since we know that

véf[k*ﬂ <, eg[k} <. ifz(vllf[kfm,eg[k},eg[k}) <, eflk]

we therefore know that v;f (k=] <, eflF which is what we wanted to show.

If v1 # 0, then we know that ifz (v, eg[w], eg[w]) — eg[w] by rule Eifz3. We can then
induct on the evaluation eg[w] —% p3 = v, which tells us that there exist Js, v5 such

that T'Fof @ 7, v3 = vgf[w], and for all k such that j3 <k, véf[k_j:ﬂ <; eg[k}.

Pick v' = v} and j = j1 +j3. We already know that I' - v’ : 7, and since v = v3, we have

flw]

that v = w3 = vé = v/fll. Now suppose we have k such that j = j;+j3 < k. Defining

ks = k — j1, we know by our application of induction above that vgf ka=gal eg,: [kal,

This is equivalent to ‘ ‘
U/gf[k—J] <, eg[k—h]

However, by Lemma 6.4, we know that eg):[k_m <r e?{[k], so by the transitivity of

contextual approximation we have that

o=l < I

24

We know that v] # 0 since v1 # 0, so ’Uif[k_‘jl] = 0. Thus

IPIOCILEDI (U CINN

and so by Lemma 5.7 we know that

I A R R O

Now by transitivity, since we know that

LIPS (ISP D (G IS5

we therefore know that véf [k=] <.ef W, which is what we wanted to show.

Case for e = ¢1 €3
This is where e/l*] = e{[w] eg[w] % v. By Tapp, we know that I' - e; : 7 — 7 and
I’ ey : 7/. By our outer induction (on the length of the evaluation) on I' F ey : 7/ — 7 and

e{[w] % vy, since i1 < i, we get that there exist jj, v} such that T v : 7/ — 7, v1 = Ullf[w],

il o W

and for all j1 <k, v; . Similarly, we get by induction on I' F es : 7/ and
1f[w]

eg[w] 72 vy, we get that there exist jo, vh such that T'Fvh : 7/, vg = v5 ', and for all jo < k,
v;f[k—Jé] <, e%‘[k].

We know that ' v} : 7/ — 7 and I' - v} : 7/, so we can apply Tapp to get that I' - o] v} : 7

Now it would be nice if we could apply induction again to v} v5, however we can’t, since it’s
possible for both j; = 0 and jo = 0, which means the evaluation isn’t actually any smaller.
However, we still need to show something similar, and for this we will consider two subcases,
making use of an arbitrary k& in them:

Consider the case where vj = fun h(x : 7/).€/. Then (v} vz)f[k] — ([/h][L) x)el) Tk

Now we can apply the outer inductive hypothesis on ([v} /h][vh/x]e’) "] 73 v3, which
tells us that there exist jg,vg such that I' - v} @ 7, v3 = v3f[}, and for all j3 < k,

véf[k_jB] <, ([v}/h][vh/x]e')I ¥, However for j3 < k, since
o o s (ot Wt 218 <, (o 1), and
thus by transitivity A

véf[k—m < (U Uz)f[k’]

The other possible case is where v} = w, if situation (1) is true. Then v,f L funk g(x:
7').¢’. We can then use our outer inductive hypothesis on ([w/g][vh/ x] Nl g to

get that there exist jj,v5 such that I' F v @ 7, vg = véf[w], and for all j5 < K,
o T < (w/gllv fele) . Letting j4 < k, we know that ([uw/g)[vh/z]e’)/H) =
[wf (k] / gH 1 /z]e’ since €’ does not have w bound in it. This is equivalent to

[f*/g] [v2 /a:]e and we know that

(fun®*1 gz 7).e’) vl M (7% /gl s M e

and equivalently
k k
oA s (1 fg]] e
so clearly by Lemma 5.7,

¥ /gl el <, of /BT T

25

i) o) T e I <

v;f [k+1]~,

By transitivity, we then get that v
Lemma 6.4, we can apply Lemma 5.5 with the context Cs3 = (T = T) M

(->1int) to get that
Uif[kJrl] Uéf[k] <, Uif[kJrl] Uéf[’f“]
Therefore, by applying transitivity once again, we get that

Uéf[kfjgl <. Uif[kﬂ] 7);f[kJrll

If we then define j3 = j5 + 1, since k was arbitrary we get that for all j3 < k,

véf[k—j:ﬂ <, (Ull Ué)f[k’]

Now in either of the above cases, we have shown that for all k greater than the corresponding
js for the case,

of <o (0 wp) W

Pick j = j1 + j2 + j3 and v/ = v5. We already know that I - v’ : 7. Also, by the combined

evaluations above, we know that v = vg = vgf -

Let j < k, and thus k is greater than ji, jo, j3. Define k3 = k — j1 — jo, and so js < k3 by
definition of j. Then we know that

Ugf[k‘z—jz} <, (v} Ué)f[kg]

which is equivalent to '
véf[k*ﬂ <, (Ui)f[k—jl—jﬂ (/Ué)f[k_jl—jE]

Now define k1 = k — jo, clearly j1 < k1. Using what we know from induction as stated above,

we get that
k1—j k
v/lf[1=l <7./ . 6{[!

which is equivalent to
vllf[k—h—]z] <, e{[k_h]

By Lemma 6.4, we get know that e{[ksz] <;r_sr e{[k], so by the transitivity of contextual

approximation,
vllf[k—jl —J2] <, e{[k]
Similarly defining ko = k£ — j1, by induction we get that
U;f[kz—jz] <. eg[’@]
which is equivalent to

U;f[k_jl—jQ] <. eg[k—jﬂ

By Lemma 6.4, we get know that eg k=] <n eg [k], so by transitivity,

v;f[k*jlsz] <. 65[’“]

We can apply Lemma 5.5 to the context

1flk—j1—32]

Ca = 0 vs :(->7 — T) ~ (->int)

26

and v/f[k n=il < e{[k] to get that

U/lf[k*jlsz} U/zf[k*jlsz} <. e{[k] U;f[k*jlsz]

Similarly, we can apply Lemma 5.5 to the context
Ci = e{[k} o0:(->7 = T2) ~ (->int)

and v;f[k_jl_h] <y egm to get that

oI flhmiimie) I I

Then we can apply the transitivity of contextual approximation to

ol =il < ilein=ial flh=ii=l o W k=il o fI] T

which gets us that ‘
ugf[k_j] < (er 62)f[k]

which is what we wanted to show. Since k was arbitrary, we have shown this to be true for
all j <k, as desired.

Case for e = e e
This is where /%l = e{ [w]Aeg[w] —? v. By Tccapp, we know that I' - e; : 7/ = 7 and
I' F ey : 7. By our outer induction (on the length of the evaluation) on I' - eq : 7/ = 7 and
6{[“}] % vy, since 41 < i, we get that there exist ji,v] such that T - v} : 7/ = 7, v1 = vlf[w],
and for all j; < k, U/If[k_]l] <pier e{[k]. Similarly, we get by induction on I' F es : 7/ and
eg[w] 72 vy, we get that there exist j2, vh such that T' - v) : 7/, vy = v;f[w], and for all jo < k,
U’f[k_jQ] <, ef[k]

2 7€y

We know that ' - v} : 7/ = 7 and ' - v} : 7/, so we can apply Tccapp to get that
I'E o™ .

Now it would be nice if we could apply induction again to v}~ v}, however we can’t, since it’s
possible for both j; = 0 and jo = 0, which means the evaluation isn’t actually any smaller.
However, we still need to show something similar, and for this we will consider two subcases,
making use of an arbitrary & in them:

Consider the case where v = fun h(z : 7/).¢/. Then (v} vj)fH — ([v}/h][vy/x]e')T L
Now we can apply the outer inductive hypothesis on ([v} /h][vh/x]e’)/ "] 73 03, which
tells us that there exist jg,vé such that I' - v} : 7, v3 = vgf [w}, and for all j3 < k,

/f[kﬂs] <, ([v}/h][vh/z]e"). However for js < k, since
v v v vh/xle , by Lemma 5.7 ([v x)e <; (v]"w , an
(1 B) = ([vf/R] vy /2e)f[k] by L 7 ([h /Ry /x)e’) M <p (v 05)], and
thus by transitivity

’f[k 73] < () '~ /)f[k]

The other possible case is where v} = w, if situation (2) is true. Then vy I fun g(x:
7').¢/. We can then use our outer inductive hypothesis on ([w/g][v} /x] Nl g to

get that there exist j5,v5 such that I' b o} @ 7, vg = Ugf[w], and for all ji < K,
v WL < (w/glfvh/x)e’) . Letting j4 < k, we know that ([w/g][v}/z]e’)/ ¥ =

27

[wllkl/ g}[1 /xz]e’ since €’ does not have w bound in it. This is equivalent to
[f*/g] [vg / x]e’, and we know that

(fun]H'1 g(z: T').e')Av;f[k] [fk/g][k]/x]

and equivalently
v;f[k‘*‘l]AU;f[k] [fk/g” f[k]/l,]

so clearly by Lemma 5.7,
[f*/g]lv f[k]/:c]e <, v’f[kﬂ] /f[k]

i I R B G L

By transitivity, we then get that vg Since vy

Lemma 6.4, we can apply Lemma 5.5 Wlth the context Cs = C{v,f kH "o} : (o7 =
T) ~ (> 1nt) to get that

I) il i

Therefore, by applying transitivity once again, we get that

NI AP BN

If we then define js = j5 + 1, since k was arbitrary we get that for all js < k,

’f[k Js] < (W /)f[k]

Now in either of the above cases, we have shown that for all k greater than the corresponding

js for the case,
[k Jsl < (W) /)f[k]

Pick j = j1 + j2 + j3 and v/ = v§. We already know that I' - v’ : 7. Also, by the combined

evaluations above, we know that v = vg = vgf Wl _ o],

Let j < k, and thus k is greater than ji, jo, j3. Define ks = k — j1 — jo, and so j3 < k3 by
definition of j. Then we know that

'f[kS J3] <. (v} -~ /)f[ks}

which is equivalent to
,Uéf[kf.ﬂ <

—T

(Ull) flk=s1 —jz}/‘(vé)f[k—jl —j2]

Now define k1 = k — jo, clearly j; < k1. Using what we know from induction as stated above,

we get that ‘
,Uif[kl_]l] < e{[kl]

which is equivalent to

,Uif[k_]l—h] <, e{[k—m]
By Lemma 6.4, we get know that e{[k_j2] <rr e{[k]
approximation,

, so by the transitivity of contextual

v/lf[k*jlsz} < ies e{[k]

28

Similarly defining ko = k — j1, by induction we get that

U;f[kz—jzl <. eg[/’@]

which is equivalent to ‘
v;f[k:—n—yz] <. eg[kz—h}

By Lemma 6.4, we get know that eg k=] < eg [k], so by transitivity,

Uéf[k*jlfjé] <. eg[k]

We can apply Lemma 5.5 to the context

Co = oAU/Zf[k_jl_jZ} D(+>T = T2) ~ (> int)

and vllf[k_jl_jz] <rior e{[k] to get that

v;f[k—jl—j2]/\v/2f[k—j1—j2} <. e{[k]/\v;f[k—jl—h]

Similarly, we can apply Lemma 5.5 to the context
¢y =elMy (->7 = 1) ~ (->int)

and véﬁk*jl*h] < eg[k] to get that

Wl lhmin=ia] Tk~ JIH

Then we can apply the transitivity of contextual approximation to

Uéf[k_j] <. U;f[k_jl—jE]Avlzf[k_jl—jﬂ < e{[k}/\v;f[k—jl—jﬂ <, e{[k]/\eg[k]

which gets us that '
Ugf[k_ﬂ <. (61A62)f[k}

which is what we wanted to show. Since k& was arbitrary, we have shown this to be true for
all 7 <k, as desired.

Case for e = (ej, e3)
This is where /vl = (€1, €2>f[w] —"v. By Tpair, we know that ' ey : 77 and ' F ey : 7.
We can apply our inner induction on the size of the term to e{ Wl yia v1, which we must do

since the evaluation may not be any shorter (meaning ¢ = 4;). From this we get that there

lul =il W

exist ji,v] such that ' v} : 7, v1 = U/1 ,and for all k > 71, v . Similarly,

g (] 2 py For the same reason

as before). From this we get that there exist ja, v} such that I' - v} : 79, vo = U/Qf [w]

all k > jo, U;f[k_ﬂé] S’TQ €£[k]

we can apply our inner induction on the size of the term to e
, and for

Pick j = j1 + j2 and v = (v}, v}). By rule Tpair, we know that I' - v : 71 X 72. Also, since
v = vllf[w] and vy = v;f[w], we know that v = (vy,v9) = <v1f[w],fu;f[w]> = (v}, vh) I = /],
Let 7 < k, and define k1 = k — jo and k9 = k — j1. Since j; < k1, by the above we know that

vif[krjl] < e{[kl]. This is equivalent to

o =il < Sl

29

By Lemma 6.4, we know that e{ [k=2] <n e{ [k], so by the transitivity of contextual approxi-

mation,
1fk—j k
,Ulf[7] <T1 6{[]

Similarly, using k9 in the same way as k1 we can deduce that

1flk—j
,U2f[]} STQ e

f1K]
2

again using our results from induction and Lemma 6.4.
Using the context C; = <o,véf[k7ﬂ> :(+>7) ~ (> 71 X 72) we can apply Lemma 5.5 to

otfb=dl < ol

which gets us that ' ‘
<U/1f[k—J]’,U;f[k—J]> <

—=T1 XT2

(T k=)

(]

Using the context Cy = <e{ ,0) : (+>T9) ~ (+> 71 X T2) we can apply Lemma 5.5 to

ol =il < ol

which gets us that
flk flk—j flk flk
<€1[]7U; [ﬂ> <_T1><T2 <61[]762[]>

Then by transitivity of contextual approximation, we have that

<U/1f[k—j]’v;f[k—ﬂ> <rixr <e{[k}, eg[kb

Or equivalently, v/fk— <rixers € (k1 as desired.

Case for ¢ = m;e

This is where e/ = 1;¢/f[*] 7 4. By Tproj, we know that T'+ ¢ : 7 x 79, where 7; = 7. By
induction on e/flWl ' (v1,v92), which we can do by the length since i’ < i, we get that there
exist j/,v” such that T'F 0" : 71 X 72, v = v and for all j/ < k, v"/[k=J] <ryx7o e/ TIk],

Since I' 0" : 71 X 19, by rule Tpair we know that v” = (v, v}) for some v}, v} such that
I'Fv):7m and T'F vh 2 7. Pick j = j’ and v/ = v]. By above we know that I - v} : 7, and
since (v1,v9) = VIl = = v;f[w}. Suppose j = j' < k. Since v/ flk=J] < x7o e fF We
can apply Lemma 5.5 to the context C' = C{m;0} : (-> 71 X 73) ~ (->7) to get that

ot =) iy <ot

Then, using Lemma 5.7 on the fact that m(vif[k*ﬂ,v;f[k*jb > vl/-f[kfj], we can get that and

SO v;-f [e=] <. me'Tk as desired.

Case for e = €'[7]

This is where efl*] = (¢/[7/])f] % v. By Ttapp, we know that I' - ¢’ : Yo.7. By induction
on €f®) 1 4 which we can do by length since i; < 4, we get that there exist ji, v} such
that I' - o] : Va7, v = vif[w], and for all j; <k, vllf[kfjl] <va.r €T

Since I' F v} : Va.7, we know by rule Ttlam that v = Aa.e” for some €” such that o; T F
"

¢ : 7. By rule Etapps we know that ((Aa.e”)[7'])/"l — ([7'/a]e”)*]. Now we can again
apply induction on the evaluation ([7//a]e”)/[*! 72 vy to get that there exist ja, vh such that

TEv, 7,09 = v;f[w], and for all jo <k, Uéf[k_jﬂ < ([/o)) T,

30

Pick j = j1+j2 and v' = v},. We already know that I - v’ : 7 by the above, and since v = vy,

flw]

we have that v = vy = ’U; = /Tl Now suppose we have k such that 7 <k.

Defining ko = k — j1, by our above induction we have that
v;f[kQ*jQ] <. ([T//a]e//)f[kz}

which is equivalent to
v;f[k—ﬂ <, ([T//a]e’/)f[k*jl]

Since we also know that (v} [r'])/*=71 i ([7//a]e”)/*=31] by Lemma 5.7
(I fele")) < (o)) /1)
Therefore by transitivity we know that

U;f[k*j] <, (U/1 [T/])f[k*jﬂ

Now by our induction results from above, we know that
Ullf[k_jl] <va.r e/f[k}
Using the context C; = o[7] : (> Va.7) ~ (->7) we can apply Lemma 5.5 to get that
@) <5 (@)1
which is equivalent to .
(Wi [P <o ()T
Then by transitivity, we have that
o < ()W

or equivalently v//lk=71 <_ efIF] which is what we wanted to show.
Case for e = unpack|a, z] = e; ine
This is where efl*] = (unpack[a, z] = ey iney)?) =% v. By Tunpack, we know that I' - ey :

Jdo.71. By induction on e{]

there exist jq,v] such that I' - v} : 3o, v1 = U;f[w], and for all j; < k, Ullf[k_jl] <3q.r, e

—" vy, which we can do by length since i; < i, we get that

Since I' - v} : a1y, we know by rule T'pack that v] = pack[r’, €|] as Ja.7; for some €] such
that ;T €} : 7. By rule Funpacks we know that

(unpack|a, 2] = (pack[r’, €}] as Ja.71) inez) ™ — ([7/a][e} /2]es) ™!

Now we can again apply induction on the evaluation ([7//a][e]/x]es) ™ =% vy to get

that there exist jo,v5 such that I' - v} : 7, vy = véf[w], and for all jo < k, v;f[kfh] <,

([7'/a[e} /]e2) .
Pick j = ji + j2 and v/ = v},. We already know that I" v’ : 7 by the above, and since v = vy,

flw]

we have that v = vy = v; = /Tl Now suppose we have k such that J <k.

Defining ko = k — 71, by our above induction we have that

o 127 <o (17 /o [ed fales) I

31

which is equivalent to ‘
of 0 <o (1 el falea) T

Since we also know that

(unpack[a, z] = v} ines) 1 — ([7/a][e] /a]es) 1]
we then know by Lemma 5.7 that

([7' /] [e'l/a:]ez)f[kfjl] <, (unpack[a,z] = v} in ez)f[kfjl]
Therefore by transitivity we know that

v;f[k_j] <, (unpack|a,] = v} in ez)f[k_jl]

Now by our induction results from above, we know that

=il < S

Using the context C; = unpack|a, z] = oines : (->3Ja.7) ~» (->7) we can apply Lemma 5.5
to get that

K]

/lf[k_jl] iney <, unpackfa, z] = €]

unpack|a, x] = v ineg
which is equivalent to

(unpack[a, 2] = v} ine)F =71 <_ (unpack|a,z] = €; iney)/I¥!
Then by transitivity using the above, we have that

v;f[k_ﬂ <, (unpack|a,] = e iney)

or equivalently v'f k=il <_ eflF which is what we wanted to show.

32

6.2 Compactness

Theorem 6.6. Given a closed recursive function value f, where - = f : 7 such that either 7 =
T1 — T9 Or T = 71 = Ty, then for all terms e such that w: 7 Fe: 7/, eflwl + < In.efln] J This can
also be expressed as efl¥l ~ efI"l for some n.

Proof. First we will show the forward direction, e/l | = 3n.ef["l | Suppose e/*! |, that is, for
some - F v : 7/, efl¥l * 4. Then we can apply Lemma 6.5 to get that there exist j,v" such that
w:TFV 7, v =207 and for all k > j, v'flk=il <, eflk],

Pick n = j + 1. For the empty context, we get that v/ < ef (] or equivalently v"f11 < e/l
Since v'fI is a value, we know that v/} |, so by definition then eI |, as desired.
Now we will show the backward direction, In.ef"l | = ef[*] | Assume that for some n, we have

that e/[" |. However, by Corollary 6.3, we know that f <, f*, so then by Lemma 5.9 we know
that efl"l <, eIl which gets us the desired result by definition, that e/ [wl | [

33

7 Relations
Definition The set Val(7) is the set of all values v of type 7.

Definition A relation over values R is a subset of Val(r) x Val(7’), which consists of all pairs of
values of types 7 and 7/, respectively. We say v R v iff (v,v") € R, and thus - v : 7 and - F o' : 7.

Definition Given a relation R C Val(7) x Val(7') over values, we can convert it to a relation
over functions, written R5, such that RS C Val(r — 72) x Val(7’ — 74). These functions can be
thought of as “stacks” or continuations that contain remaining computation to be done. We define
this continuation relation RS as follows:

fRS fiff Vo, 0. if v R0/ then f v~ f' o/

Similarly, given such a function relation R C Val(r — 72) x Val(7’ — 74), we can convert it back
into a value relation, written RT, such that RT C Val(7) x Val(7’). We define it as follows:

v RTV EVF, f.if fR f then fox~ f o

The benefit of these relation transformations is clearer after seeing the properties that they provide.
For simplicity, the letter symbols f and g and their variants will be used to indicate functions.

7.1 ST Closure

Definition Given a relation R C Val(7) x Val(7’), we call RST the ST-closure of R. If R = RST,
then we say that R is ST-closed.

Lemma 7.1. For a given relation R C Val(r) x Val(7’), R C RST (meaning that the ST-closure
is inflationary).

Proof. Assume v R v'. We want to show that v RST /.

By the definition of RS, we know that if (f, f') € RS then f v ~ f’ v/, since by assumption v R v’.
Then by the definition of R5T, we have that v RST v/, O

Lemma 7.2. For a given relation R C Val(7)xVal(7’), R5T = R5T5T (meaning that the ST-closure
is idempotent).

Proof. First, we need to show that if v R5T v/, then v R5TT ¢/, We already know this from the proof
that R C RST, so this case is done.

Now we need to show that if v R5™T ¢/, then v R5Tv/. Assume that v RSTST¢/. This means that if
f RS £/ then f v ~ f' v'. For v R5T ¢’ to be true, we need to show that for all f RS f/, f v ~ f' v'.
To show this we just need to prove that RS C R5™, which can be shown in a manner very similar
to the proof of R C RST in Lemma 7.1.

Thus, the two sets must be equal.]

34

Definition We can extend a relation R C Val(7) x Val(7') over values to a relation RE over terms
by considering only terms that evaluate to those values:

eREe iff e ~ €/ and Vv, . if e —* v and € —* v’ then v R v’

where - Fe:7and - Fée' : 7.

Corollary 7.3. Given a relation R C Val(r) x Val(7’), then R C RE.

Lemma 7.4. Given a relation R C Val(r) x Val(7'), if €] — e; then (e1,e2) € RE < (€], e2) € RE.
Also, if €}, — eg, then (e1,e2) € RE<(e1,€}) € RE

Proof. We will first show the forward direction. Suppose that R C Val(7)xVal(7') where (e1,e2) €
RE such that €] — e;. We want to show that (e}, e2) € RE.

First we need to show that €] ~ es. We know that e; ~ ey by assumption. We also know that
e} ~ ey due to rule H step, so therefore €| ~ ey by transitivity.

Now we just need to show that Yoy, ve. if €] —* v1 and eg —* vy then (v1,v2) € R. But if €] —* vy,
then e; —* vy since €} — e1. Since we already know that Vuy,vs. if e; —* v and ea —* vy then
(v1,v2) € R by assumption, the result follows.

For the opposite direction, suppose that (e}, e2) € RE and that €] — e;. We want to show that
(61, 62) € RE.

First we need to show that e; ~ es. We know that €| ~ ey by assumption. We also know that
e} ~ e due to rule Hstep, so therefore €] ~ ey by transitivity.

Now we just need to show that Yvq, ve. if e; —* v1 and ey —* vy then (v, v2) € R. But if e; —* vy,
then e} —* vy since €] — ej. Since we already know that Vv, ve. if €] —* vy and ep —* vy then
(v1,v2) € R by assumption, the result follows.

Proving the other case works out in essentially the same way.]

Corollary 7.5. Given a relation R C Val(7) x Val(7'), if €] —* e; and e}, —* ey then
(e1,e2) € RE < (€], eh) € RE

Lemma 7.6. Given a relation R C Val(r) x Val(7), if (f,f’) € RS and (e,e’) € RS™E, where
‘Fe:7Tand -+¢€' : 7, then fe~ f €.

Proof. Let (f, f') € R® and suppose that - e : 7 and - - ¢/ : 7. First, assume that e RS™E ¢/ we
want to show that f e ~ f’ ¢/. From the definition, we know that e ~ ¢’. Suppose neither e nor €’
terminate. Then neither f e nor f’ ¢’ terminate, because there exist no values that e and ¢’ step
to that allow rule Fapps to be applied. Now suppose both e | and ¢’ |. Then there exist some v, v’
such that e —* v and €' —* v'. By definition, (v,v') € R5T, and thus f v ~ f’ v/. Therefore, by
rule Hstep, f e ~ f’ €/, which we have shown to be true in both cases and thus the desired result
is obtained. O

Lemma 7.7. Given relations R C Val(ry)xVal(r{) and Q C Val(r)x Val(7s) such that Q = Q57,
and that (v,v’) € R=(gv,¢ v') € QEF, then (v,v') € RST=(gv,¢' v') € Q5 = QF, where
g:71 — 1 and ¢ : 7] — 7.

Proof. Assume that (v,v") € R5T. We want to show that (g v,¢’ v') € QE. Suppose (f, f') € Q5.

Now we just need to show that f (g v) ~ f’ (¢’ v). We claim that (fog, f'og’) € RS, which would
imply this fact by the assumption that (v,v’) € R5T.

35

Suppose (u,u’) € R. We need to show that f (g u) ~ f’ (¢’ «'). By our assumption that (u,u’) €
R =(g u,g v') e QF, we know that (g u, ¢’ uv') € QE. The result follows from applying Lemma 7.6
with (f, f) € Q% and (g u, ¢’ v') € Q5. O

7.2 Admissibility

Definition Let R C Val(r) x Val(7'), and define the recursive functions - + f : 7" and - - f": 7",
where either 7" =7 > mor 7" =71 = .

Given that w: 7" Fe:7and w: 7" F € : 7/, we say that R is admissible if
(/] Ty € RE for all i = 0,1,... = (/¥ /F'1*]) ¢ RE
Lemma 7.8. Let R C Val(r) x Val(7’) such that R = R5T. Then R is admissible.

Proof. To show the result, we need to show that ef [w] ~ ¢/f'[v] and that for all v and v/ if eIl * g
and 7'} —* o/ then (v,v') € R.

By Theorem 6.6 on e/ we get that e/[*) ~ ¢/lil for some i. By our assumption that (ef[i], et [i]) €
RE, we get that e/l!] ~ ¢/f'lil. Then by applying Theorem 6.6 again but this time for the reverse,
we get that e'f i~ ' f'[] Thus by transitivity of Kleene equivalence, we have that /%] ~ ¢/f Tl

Now assume e/[*! —* v and /"] »* o/ for some v,v. We want to show that (v,v') € R. Let
(9,¢) € RS. Now if we consider (g e)/l*], by Theorem 6.6 we know that (g e)/*! ~ (g €)fl! for
some i. By our assumption, we know that (ef i e'f /[i]) € RE. Then we can apply Lemma 7.6
using the fact that RE = RS to get that g (e/l1) ~ ¢/ (¢/f'l]). Similar to before, we can apply
Theorem 6.6 to get that (¢’ /)"l ~ (¢ /)],

By the transitivity of Kleene equivalence, we get that (g e)/[*! ~ (¢ ¢)/'[*!. Since g and ¢ are
closed, this is equivalent to g ef*! ~ ¢/ /7'l We know that e/} —* v and 7'l —* o/, so
that implies that ¢ e/l —* g v and ¢’ 7' »* ¢/ v/, and therefore g v ~ ¢’ v since they have
the same termination (they are just further along in the evaluation). But since by assumption
(g9,9") € RS, we know that (v,v') € RST = R.

Therefore, because v and v’ were arbitrary, we have that (ef [w] ¢'f /[w]) € RE, as desired.]

36

8 Logical Equivalence

Definition The judgement ¢ : A states that J is a type substitution that assigns a closed type to
each type variable a € A. A type substitution § induces a substitution function § on types A - 7
given by the equation

8(r) = [8(an) /au]...[8(cwn))T
and similarly for terms. Substitution is extended to contexts pointwise by defining §(I')(z) =
d(I'(z)) for each z € dom(T).

~

Definition Given two type substitutions, d; : A and Jdo : A, we define an ST-closed relation
assignment, 7, between d; and d2 as an assignment of an ST-closed relation n(a) € Val(di(a)) x
Val(d2(a)) to each o € A. The judgement 7 :J; <> 2 states that n is an ST-closed relation
assignment between §; and Js.

Definition Suppose A F 7type for the below types. Also suppose that 41 : A and d2 : A, and
that 7 : d; <> d2. We define a relation [7] based on types as follows

[al,:5, 5, = n(a)
[unit],.5, s, = {(0,0)}
[[int]]m;lw;2 = {(v,v) | v € Val(int)}
[— Tgﬂn:51H52 = {(v1,v2) € Val(d1(m1 — 7)) x Val(da(t1 — 72)) |

if (v1,v5) € [11],.5,055, then (vi vy, v2 vh) € [[72]]%;51952}
[= TQ]]n:(;l(_)(sQ = {(v1,v2) € Val(d1(m1 = m)) x Val(da(m1 = 2)) |

if (v],03) € [T1l,y5, 055, then (v17v],v270h) € [T2]5 016,
[m1 % T2]]77:51<_>62 = {(v1,v2) € Val(d1(m1 X 12)) x Val(da(7 X T2)) |

(mv1, mU9) € [[7'1]]77:51<_>52 and (mauy, move) € [[7’2]]77:51<_>52}
[[Va.T]]n:51<_>52 = {(v1,v2) € Val(01(Va.7)) x Val(dy(Va.7)) |

V7 type, 72 type, R C Val(7y) x Val(rp) for R = R5T
(Ul [71]71)2[7-2]) € [[T]]](En®a‘—>R):((51®o¢<—>’rl)<—>(62®a<—>7’2)}
[Bet],.5, 056, = {(v1,v2) € Val(01(Ja.7)) x Val(da(Ja.7)) |
JAF 7 type, A - type, R C Val(r) x Val(m) for R = RT

(Uivvé) S [[T]](n@a(—)R):(61®a‘—>71)<—>(52®a‘—>72)
with vy = pack|[ri,v]]as Ja.7 and vy = pack[r, v4] as Ja.7}5T

As a shorthand, when 7 is empty, we just write [7].

S

Lemma 8.1. For all 7, [7], 5 .5, = [[T]]ngl{_}(b.

Proof. We already know that [7], 5 .5, C [[T]]f]:Tal &5, Py Lemma 7.1.

Thus it just remains to be shown that [[T]]f]:r(;l o6, © [7],:6,55,» Which will proceed by induction on
the structure of 7.

37

Case for 7 =«
By definition, we know that [a], s .5, = m(a). The result follows from the fact that n(a) is
ST-closed.

Case for 7 = unit

Trivial, because [unit]®

7
type unit, [[unit]]7s7T51H52 ={(0, O)} = [unit], 5 s,

T(Sl &5, only relates values of type unit, and since there is only one value of

Case for 7 = int

Suppose that (vi,v2) € [[int]]Z:T(;lHJQ. We want to show that (vq,vs) € [int]
f = Az :int.ifz(x —v,0,L1). It must be that (f, f) € [int]
of [int], 5 .,s,, all pairs in it are of the form (v,v) € [int], ;5 .5,
(f. f) € [[int]]::(glﬁ&z, we know that f v; ~ f v by the definition of [[int]]f]:T&HaQ. But the only way
for f ve to have the same halting behavior as f v; (which converges to 0) is if v; = v, as otherwise
f vy will diverge. Thus v; = vg, and so (v1,v2) = (v1,v2) € [int] since v1 € Val(int).

First, define

2:51952, because by the definition
and clearly f v ~ f v. Since

77:(51 00"

77:(51 (—)52

Case for t=17 >

We will prove this case by making use of Lemma 7.7. First we will define R = [1; — 72] and

77:61(—)52
Q = [[7’2]]77:51<_>62. By induction on 7 we know that Q = Q5T. Also, define g1 = A\hq : 71 — T2.h1 V1

and ga = Ahg 1 71 — T2.hg va, Where (vi,v2) € [T1],.5, 155,

We want to show that (f1, f2) € R =(g1 f1,92 f2) € QE. Assume (f1, f2) € R. Then g1 f1 — f1 11
and go fo — f2 va. Since (v1,v9) € [[7'1]]7]:5“_)52 by assumption, we know that (f1 v1, fo v2) € QF by

the definition of R = [11 — 7], 5 .,5,- Therefore, by Corollary 7.5, (g1 f1,92 f2) € QE, as desired.

Then by Lemma 7.7, we know that (f1, f2) € R5T=(g1 f1,92 f2) € QE. Assume that (fi, fo) € RST.
To show this case, we need to show that (fi1,f2) € R. However, by the above we know that
(91 f1,92 fo) € QF, and thus (f; v1, fo v2) € QF by Corollary 7.5. Then by the definition of
[— TQ]]n:(;l(_ﬂ;Q, (f1, f2) € R, and so the result follows.

Casefort =1 =1
Essentially the same as the case for 7 =71 — 7.

Case for =1 X m

We will prove this case similarly to the 71 — 75 case in that we’ll make use of Lemma 7.7, however
it will set it up slightly differently. Define R = [11 X 73] nbrss, and Q1 = 1] 1:61 456, BY induction
we know that Q1 = QfT. Also, define g1 = Ahq : 71 X To.m1hy and go = Ahg : 71 X To.m1ho.

We want to show that (vi,v2) € R =(g1 v1,92 v2) € QE. Assume (vi,v2) € R. We know
that g; v1 — mov1 and go vy — mva. By the definition of R = [X TQ]]n:(;l(_N;Q, we know that
(w1, mve) € QF. Therefore, by Corollary 7.5, we get that (g1 v1,g2 v2) € QE.

Using this fact, we can apply Lemma 7.7 to get that (vi,v2) € R5T=(g1 v1,92 v2) € QF. Thus,
if we assume that (vq,ve) € R5T, we want to show that (v1,v2) € R. By the above, we get that
(g1 v1,92 v2) € QE. Again using Corollary 7.5, we get that (mvy, muv2) € QE.

We can then do the same as above but this time using Qo = [12] and show that (movy, move) €

17:51(—)62
Qg. This combined with the above fact shows us that by definition (v1,v2) € R, as desired.

Case for 7 = Va.7’

Again we will make use of Lemma 7.7. Define R = [Va.7'] Also, for - - 71 type, - - 72 type

77:51(—)52 °

38

and R’ C Val(r) x Val(ry) such that R’ = R’3T define y = n®@ o < R’, §] = 6 ® @ < 71 and
L =02 ® a < 1. Then let Q = [[T/]]n’ﬁ’lw%’ as well as g1 = Ay : Va7’ hy[r1] and g2 = Ahg :
VOJ.T’.hQ[TQ].

To make use of the lemma, we must show that (vi,v2) € R =-(g1 v1,92 v2) € QE. Assume
that (vi,v2) € R. We know that g1 vi — wvi[r1] and g2 va +— wva[rz]. By the definition of
R = [Va.7],.5, 055, We know that (v1[m1],v2[re]) € QF since 71 and 75 were arbitrary. Therefore,
by Corollary 7.5, we get that (g1 vi, g2 v2) € QE.

Using this fact, we can apply Lemma 7.7 to get that (vi,vs) € RST=(g1 v1,92 v2) € QE. Thus,
if we assume that (v1,v2) € R5T, we want to show that (vy,v2) € R. By the above, we get that
(g1 v1, 92 v2) € QF. Again using Corollary 7.5, we get that (v1[71],v2[72]) € QE. Then by definition,
we have that (vi,v2) € R.

Case for 7 = Ja.7’

Unfortunately, we can’t use the same strategies as in the previous cases to prove this case. Thus, we
have to build the ST-closure into the definition. Since [Ja.7’]]77:61 &5, 18 defined as the ST-closure
of something, and since we previously proved that the ST-closure is idemptotent, we have that

[[EIO(J"]]?S?:F&Hé2 = [Ba.7'],.6, ¢35, as desired.

O
Corollary 8.2. For all 7, [7], 5 .,s, is admissible.
Proof. Follows immediately from Lemma 8.1 and Lemma 7.8. O
Lemma 8.3. For [[T]]fr 5135, We can essentially use the definition as if it were [7], ;5 .,5,. More

specifically, the following are true:

If (mie1,mes) € [[Tl]]f]:51<_>52 and (meeq, maeg) € [[T2H5:51<_>62, then (e1,ez) € [X 7'2]]351952.

If (e1,e) € [T1 = 7ol 5,55, then if (€], €5) € [T1]5, 05,0 (€1 €1, €2 €h) € [T2]5, 56,

If (e1,e2) € [[T]]E’ﬁiﬁ%’ where 0] = 01 ®@a — 71, 0, = @@ < 19, = n®a — R for an ST-closed

R C Val(ry) x Val(re), then (pack|r1, e1] as Ja.7, pack[rs, e2] as Ja.7) € ﬂﬂa.r]]ﬁzélHaz.

Proof. Case for 7 X 1

Suppose that (mie1,me2) € [[Tl]]i“;l(—)(b and (moeq, moes) € [[TQ]]E']:&(_}(;Q, we want to show that
(e1,e2) € [11 x 7'2]]5151952. If e; does not terminate, then clearly neither do me; and mee;. By
our assumptions this implies that neither mjes nor mees terminate. This implies that es doesn’t

terminate (and the same can be shown in the other direction). Thus the result holds in this case.

Suppose that e; |, so ey —* (v1,v9), where v; val and veval. Then clearly me; —* vy and
moeq —* vg. Then by our assumptions we know that mes —* v] and meeg —* v, where (vi,v]) €

[[7'1]]77:51952 and (ve,v}) € [[72]]77:51952. Then by definition (e, ez) € [11 X TQ]]E']:(;lHéz, as desired.

Case for 11 — ™

Suppose that (e1,e2) € [11 — 7] and (e),¢)) € ﬂTlﬂf]:leéQ, and we want to show that

2:51952
(e1 €),e0 €}) € [[Tgﬂg:61<_>52. Suppose that e; €} |. This implies that e; | and €} |, which by the
above implies that e | and €, |. Thus we have that e; —* vy, €] =* v}, ea —* va, and €}, —* v}, for
values vy, v}, v2, v5. This tells us that (v1,v2) € [11 = 7] and (v}, v5) € [71],,.5, 4,5, SO by definition
(v1 Vi, vy vh) € [[Tgﬂg:51<_>52. However, we know that e; €] —* v; v} and es e}, —* vg vj, which

39

implies that (e1 €], ez €}) € [[7'2]]5: 51455,> as desired. This also tells us that ez ey |. Similarly we can
show this assuming that es €} |, which will tell us that e; €] |. Thus we have that e; €] ~ es €},
and then if they both terminate the above gets us the desired result.

Case for Ja.7
Suppose (e1,e2) € [[T]]f],:éllﬁ(sé, where 0] =01 @ @ = 711, 0, =02 @ < T2, 1 =N ® a — R for an
ST-closed R C Val(7) x Val(r2), and we want to show that

(pack|r1, e1] as Ja.7, pack|m, e2] as Ja.T) € [[Ela"r]]gzﬁu—)ég

First, if pack[ri, e1] as Ja.7 doesn’t terminate, then clearly e; doesn’t terminate. By assumption,
this implies that es doesn’t terminate, which then implies that pack[rs, €3] as Ja.7 doesn’t as well.

If pack[r, e1] as Ja.7 does terminate, then we know that
pack|r1, e1] as Ja.7 —" pack|r1, v1] as Ja.T

for some v;. But this means that e; —* v1, which means that by assumption there must be some

vy such that ey —* vy, and (vi,v2) € [[T]]n:51<_>62. But then by definition of the type relation,

(pack[ri, v1] as Jov.7, pack[ry, vo] as 3a.7) € [Fa.7], 5, .5,

So the desired result follows.

O]

Definition Recalling our definition of expression substitutions v from earlier, we define the relation
v ~r ' [n: 8 < 2] to mean that v: T, 4/ : T', and that for all x € T, (y(z),~(z)) € [[F(a:)]]g:(;lHéQ.
Definition We say that the expressions A;I' - ey : 7 and A;T' F es : 7 are logically equivalent,
written A; ' ey ~ ey : 7 iff, for every assignment d1 : AAand 0o : AA, and every ST-closed relation
assignment 7 : 01 <> 0o, if y1 ~p Y2[n : §1 <> 2] then (F1(01(e1)),72(d2(e2))) € [[7']]5:5“_)52.

As a shorthand, we write e; ~, ey instead of - Fe; ~ e : 7.

8.1 Compositionality
Lemma 8.4. If [[T]]n:61<—>52 = [[T/]]r]’:(sll(—)(%? then [[T]]E]:61<—>52 = [[T/]]fy/:ﬁiHéév

Proof. Suppose that (e, e2) € [7] If e; does not halt, then we know that ey also does not

E
n:01302"
halt, and thus (e1,e2) € [[T’]]f],:(;i(_)éé. However, if e |, then also ey |, so we know that e; —* v;
and eg —* vg, and thus (vy,v2) € [7]

n:016>6,- DUt by assumption, (v1,v2) € [[T/]]n’ﬁ’lﬁ%’ and thus

by definition (e1,es) € [[T’]]g,:(;/l(_}éé. O
Lemma 8.5. Suppose A - 7/ and 1 : A, d2 : A, and n: 01 <> 2. Let R = [[7'/]]77:5“_)62. Then
(v1,v2) € [[7'/]T],.5, 055, if and only if (vi,v2) € [[T]]n,:(;i(_%, where =n®a — R, 0] =6 Qa —
01(7"), and 65 = 62 @ av < da(7’).

Proof. By induction on the structure of 7.

40

Case for 7 = o
Since 7 = «, [[T]]n/:(;/l(_)é/ = R, where as defined above R = [7], 5 .,s5, = [[7'/]7], 5, ;5,0 SO these
are the same and the dzesired result holds.

Case for 7 = o/ # «

Since o/ # «, we know that o’ € 1, so we have that both [[T]]n’!5’1<—>5§ = (/) and [[[T//Oé]T]]n/:(gi(_ﬂgé =

n(a’), so these are the same and the desired result holds.

Case for 7 = unit
Trivially true, since the logical relation for unit does not depend on type variables.

Case for 7 = int
Trivially true, since the logical relation for int does not depend on type variables.

Case for t=17 >
Assume (v1,v2) € [[7'/]7], 5 5, Which tells us that

(U/17Ué) € [[[T//a]Tl]]nﬂlH(SQ i(/Ul U/17U2 Ué) € [[[T//a]T2]]n:61H52

Assuming that (v],v}) € [71],y.5: we know by induction that (vi,v5) € [[7'/a]m], 5 5, and

04
then by the above that (v v],vq v}) € [[[T,/a]Tg]]g:(;l(_)&Q. Then by induction and Lemma 8.4 we
know that (v; v],ve v}) € [[7'2]]5/:51 o, By the definition of the logical relation this means that
(v1,v2) € [7],).51 5, @ desired.

The opposite direction is shown in a similar manner.

Casefort=71 =1
Assume (v1,v2) € [[7'/]7], 5 5, Which tells us that

(v1,v5) € [[7'/almil,5 08, = (01701, 02705) € [[7'/0]m2] 5 000,

Assuming that (v],v5) € [[7'1]]77,:55 we know by induction that (vi,v5) € [[7'/alm], 5 .5, and

04
then by the above that (v1 v}, v vh) € [[[T//O(]TQ]]EZ(SH_)%. Then by induction and Lemma 8.4 we
know that (vq v}, vy) € [[7'2]]%,:51 &g, By the definition of the logical relation this means that
(v1,v2) € [7],).51 55, @ desired.

The opposite direction is shown in a similar manner.

Case for 7 =1 X 1o

Assume (vi,v2) € [[7'/a]7], 5 (5, Which tells us that (mv1, mv2) € [11], 5,05, and (mov1, Tav2) €
[72],.5,4:5,- However, by induction we get that (miv1,mv2) € [[[T’/oz]ﬁ]]n,:(;/ﬁ_% and (mau1, Tov2) €
[HT’/O&]TQ]]W/:(;{H%. But this means that (vq,v2) € [[[T//Q]T]]n/:(;i(_)éé, as desired.

The opposite direction is shown in a similar manner.
Case for 7 = V3.7
Assume (vi,v2) € [[7'/a]7], 5, .s5,, Which tells us that V¥ type, 72 type, R C Val(7i) x Val(rs) such
that R/ = R/ST,
E
(Ul [7'1]77)2[7'2]) € [[[7-//0‘]7—”]]17@95‘—)R’:61®,8‘—>7'1<—>52®5‘—>72

41

But by induction and Lemma 8.4, we know that

E
(v1[m1], v2[m2]) € [[T”]]r]’@,@HR’:5’1®,8‘—>T1<—>5§®B;>7'2

for the above, which then tells us that (vq,vs) € [[T]]n’i5i o, by definition.

Case for 7 = 36.7"
First, we will prove this true for Q, where Q is equivalent to [[7'/a]7], s .,s, except without the
additional ST-closure wrapped around it. Similarly define Q' in relation to [71,.5+5,- Assume

(v1,v2) € Q, which tells us that there exist 7 type, 72 type, R C Val(ry) x Val(7z) such that
R’ = R’ST, where

/ / / "
(Ul, 1)2) € [HT /Oz]T]]n®5<—>R’:61®,6’(—>71<—>52®6;>7'2
with v1 = pack[ri,v]] as 38.7" and vy = pack|r,v)]as I5.7”7. But then by induction we get that
/ / 1
(vi,v5) € [T]]W@B%R’:&i@&—nu—%é@ﬁ%m

Then by definition, (vi,v2) € Q’. We can show the reverse direction in a similar manner.

We have shown that Q = Q’, so then by Lemma 8.4, we know that Q5T = Q'3T, which is equivalent
to saying that [[7'/alT], 5 5, = [[T]]n,:(;i(_ﬂ;é, which is what we wanted to show.

O

Lemma 8.6. Suppose A = 7/ and 61 : A, 02 : A, and n: 01 <> 2. Let R = [[T’]]n:51<_>52. Then
(v1,v2) € [[[7"/04]7']]2:5“_)52 if and only if (v1,v2) € [[7']]]5]/:5/195/2, where / = n®a — R, 0] =0 Q@a <
(51(7”), and (5& =0 R@a— (52(7'/).

Proof. Follows immediately from Lemma 8.5 and Lemma 8.4. 0

42

9 Logical and Contextual Equivalence Coincide

9.1 Reflexivity

Theorem 9.1. If A;T'Fe: 7, then A;T'Fe~e:T.

Proof. By induction over typing rules. For each case we simply need to show that given substitutions
91 and 2 and an ST-closed relation assignment 7 : §; <> d2 such that 71 ~p v2[n : 61 > 2], then

(F1(61(e1)), 2(02(€2))) € [7]55,005,-

Case for Tunit
Trivially true by definition of logical equivalence, as clearly (O, ()) € [[unit]]ﬁ: §14362"

Case for Twvar R

Assume that A;T' =z @ 7 and v ~r vao[n : 91 <> d2]. Since x is a variable, clearly d1(x) =
and d3(z) = z. Thus, since x € T, for some e, e’ we know that v1(z) = e; and vo(z) = e3. By
the definition of v ~p 2[n : §1 <> d2] we know that (eq,ez) € [[T]]rEz:51<—>62’ which by the above is

equivalent to (31 (81 (z)),32(32(z))) € [[T]],’E]: 5,436,~ Lhus we have the desired result.

Case for T'int

Assume that A;T'F n :int and v1 ~p y2[n : 01 <> d2]. By definition, (n,n) € [int]
(7’L, n) e/\[[int]]g:éﬂ—)&‘ Y R —
that 71 (d1(n)) = n and 42(d2(n)) = n, so we have that (71(d1(n)),72(d2(n))) € [[int]]gzélﬁéz.

101 362 and thus

Since n is a closed term and contains no term or type variables, we know

Case for Tintop
Assume that A;T'F ejpeg : int and 41 ~p Y2[n : 01 <> d2]. By induction we get that A;T' F e; ~
e1 :int and A;I'F es ~ e : int, or equivalently

(F1(01(e1)), F2(02(e1))) € [int]E 5, s,

(F1(01(e2)), 72(82(e2))) € [1nt]5s, s,

This means that 7; (3\1(61)) o~ ﬁg(gg(el)) and 71 (8\1(62)) o~ /7\2(32(62)). From this we can see that
N(Gi(erpea)) L &T(G1(en) b and Fa(Gr(e2)) 4

& A(0a(e1) L and Bo(hr(e2)) L & Fa(a(erpea)) |
Therefore, 73 (25\1 (e1pes)) =~ %(3\2(@1 pe2)), which gets us the first part of the desired result.

Now, suppose that J1(d1(e1)) —* ni and F2(32(e1)) —* n} for some ni,n}. By the fact that
(F1(81(e1)), F2(82(e1))) € [[2'7”Lt]]5:51<_>52 by induction, we know that (n1,n}) € [int], s .5, Dy the
definition of the extension to term relations. But by the definition of [int], s .,s,, this means
that n; = n}. We can show the same for ey with some ny. Define n = njpng. Since they
are substitutions, we know that 7, (31(91 pe2)) is equivalent to 7 (31 (e1)) P71 (8\1(62)) and similarly
that 42(02(e1pe2)) is equivalent to 42(d2(e1)) py2(d2(e2)). Thus by the Eintop rules we know that
~1(d1(e1pez)) —* n and F2(d2(e1pe2)) —* n. By definition, (n,n) € [int] so we have
shown the second half of the result, and thus

1:014>02°
(F1(81(e1pea)), Fa(da(erpen)) € [[int]]f,;awtb

43

Case for T'ifz
Assume that A;T' - ifz(ej, e, e3) : 7 and 1 ~p Y2[n : d1 <> d2]. We want to show that

(F1(01(ifz(e1, €2, €3))), Fa(d2(ifz(e1, €2,€3))) € [TEs s,

or equivalently
(1£2(51(31(e1)), F1(01(e2)), 31 (31 (e3))))), if2(F2(d2(e1)), A2 (B2(e2)), F2(B2(€3)))) € [T]s, s,

By induction we get that A;I'Fe; ~ ey :int, A;T'Fes ~ ey : 7, and A;T' F e3 ~ eg : 7, so this
tells us that

~

(F1(01(e1)), F2(82(e1))) € [int]E 5, oo,
(F1(01(e2)), 72(02(€2))) € [7]Es, 6,
(F1(31(e3)), A2(02(e3))) € [71Es, 0,

From this we get that 31 (6 (e1)) ~ F2(02(e1)). Then if 91(61(e1)) doesn’t terminate, then neither
does ’}/2(3\2(61)) and by rule Eifz neither does ’}/1(51(11:2(61, ea,e3))) nor %(3\2(ifz(el, €2,€3))), SO
the result holds in that case. If M (61(61)) J, then also 72((52(61)) 1, so there exist some n,n’ such
that ’)/1(61(61)) —* n and ’)/2(52(61)) —* n' such that (n,n') € [int], 4 .,s,- However, this implies
that n = n' by the definition of [int], s .,

If n =0, then by rule Fifzo we know that both
i£z(71(31(e1)), 91 (31(e2)), A1 (1 (es))))) =" A1 (d1(e2))

ifz(Fa(d2(e1)), 72(02(e2)), 32(82(e3))))) = F2(B2(e2))

Then since we know by induction that (31(01(ez2)),32(02(e2))) € [[T]]i:(;l 5,0 1t clearly follows by
Corollary 7.5 that

(:7\1 (gl(ifz(eh €2, 63)))7 :Y\Z (SQ(ifz(eh €2, 63))) € [[T]]7E]:51<—>52

We can do similarly in the case where n # 0 except with es instead of es, which gets us the desired
result.

Case for T fun
Assume that A;T F fun g(x : 71).e : 71 — 72 and v ~r 72[n : §1 <> d2]. We need to show that

(F1(01(fun g(@ : 71).€)), F2(d2(fun g(z : 71).¢))) € [11 = Tolbs, s,

which is equivalent to showing

(fun g(x : 71)A1(01(e)), fun g(@ : 71)A2(82(e))) € [11 = Tlbs, s,

Since this is a value already, we can just show that it is in [— 72 as opposed to

E
[[Tl - T2]]17'51<—>§2 ’

7]:51(—)52
since the former implies the latter.

Define f; = fun g(z : 7). 71(61()) and fo = fun g(z : 7). %(;5\2()). We will prove by induction

that for all 4, (fi, fi) € [— 72],.5,¢55,- 10 the following, assume that (vi,v2) € [71],.5, 6,
When i = 0, we want to show that (fY v, f vg) € [[72]]77:51 &5, from which the result follows by
definition. By definition, neither terminate, thus we trivially have that (f{ vy, f v2) € [[7'2]]5:51 o6
since fY vy ~ f vy and neither steps to a value.

44

Now suppose that we know that (f{, f2) € [11 — 2]
({'—&-1 5‘4—1

01 55,- We want to show that

V1, v9) € [[TQ]]];:(;IH&. By using Corollary 7.5, we just have to show that

(LA gllor/2]Lf1/ 171 (Oue)), (£ /9llva /2l [f3/ FA2(82(€))) € [7el5, 455,
Since the inner substitution for f was done in the definition of ff“ and fé“, the outer substitution
has nothing to substitute for and so we can remove it like so:

([v1/2][f1 /9131 (31(e)), [v2/a]f3/ 91 (2(€))) € [72D 5,005,

Now define 7} =91 ® g = fi®z < v; and 74 = 72 ® g = fi ® ¥ < vy. By the inner induction
on n, we know that (f{, f3) € [— 72l,.5 46, and so (f1,f3) € [11 = 72l,.5,6,- Similarly,
we also know that (vi,vs) € [[Tl]]n:JIHJQ. Thus, for IV = ',z : 71,9 : 1 — T2, we know that
Yy ~rr Yh[n 01 <> d2). But by our outer induction, we get that A;T' F e ~ e : 7, which tells us
that (71(d1(e)),75(05(e))) € [[TQ]],,E]:51<_>62, which is exactly what we wanted to show.

Now that we know that (f{,f:) € [— T2]:61 56
(whll wh2l) € [r =] for all i. We know by Corollary 8.2 that [11 — 7]

admissible, so by using the property of admissibility with e = w we get that (w/! [w],wfz[w]) €
[71 = 7216, 55, OF equivalently that (f1, f2) € [11 — 7] which is what we wanted to show.

for all ¢, this is equivalent to saying that

1’]:51(—)52 77:61(—}62 15

77:51(—)52 ?

Case for Tapp
Assume that A;T ey eg : 79 and 1 ~r Y2[n : §1 <> d2]. We need to show that

(F1(G1(er €2)), F2(d2(e1 €2))) € [T2]Es, 50,

which is equivalent to showing that

(F1(01(e1)) F1(d1(e2)), F2(02(e1)) F2(02(e2))) € [T2]ks, 5,

By induction we get that A;T'Fe; ~ ey : 7 — 7 and A;T'F eg ~ ey : 71, which tell us that
(F1(81(e1)), F2(02(€1))) € [11 = T2l o6

(F1(01(€2)), F2(02(e2))) € [T11%s, 55,

This implies that 71 (81(e1)) ~ F2(d2(e1)). Thus if 7, (81(e1)) does not terminate, then neither will
~2(d2(e1)) by the above, and thus neither 7, (d1(e1 e2)) nor 72(d2(e; e2)) will by rule Eapp;. The
same can be said about 7; (/5\1(62)) and %(;5\2(62)). Thus the result holds in these cases, so we just
have to show it holds when all components terminate.

Now suppose that T (8\1(61)) —* f1 and :}/\2(8\2(61)) —* fo for some f1, fo, as well as 71 (31 (e2)) —* vy
and J2(d2(e2)) —* vg for some v,v’. But by the definition of the extension of the logical relation
to terms, we know from the above that (f1, f2) € [11 — 7], 5 5, and similarly that (vi,v2) €

[[71]]”:51H52. Then we know that (f1 v1, fo v2) € [[Tg]]ﬁ:(;lw;z by the definition of the logical type

relation over arrow types. But then %(31(61 e2)) —* f1 v1 and ’/7\2(8\2(61 €2)) —* fo vo by our
assumptions above and the Fapp rules. From this we get that

(F1(d1(e1 €2),92(b2(e1 €2)) € [malls, s,

as desired, by application of Corollary 7.5.

45

Case for Tccfun
Assume that A;T' F fun g(z: 71).e : 71 = 72 and 71 ~p Y2[n : §1 <> d2]. We need to show that

(F1(01(fun (@ : 71).€)), F2(02(Fun g(a : 71).€))) € [11 = Tolbs, s,

which is equivalent to showing

~

(fun g(z : 71).71(31(e)), fun g(a : 71)F2(d2(¢))) € [11 = L) P

Since this is a value already, we can just show that it is in [= 7]
[[7' 1 = T 2]]

1:01 430, B opposed to

52 51458, Since the former implies the latter.

Define f; = fun g(z : 7'1).%(31(@)) and f, = fun g(z : Tl).‘y\g(gg(e)). We will prove by induction
that for all 4, (f{, f3) € [11 = T2],.5,c,6,- In the following, assume that (vi,v2) € [71],.5, 016,
When i = 0, we want to show that (f; v1, f3 v2) € [[7'2]]2:51 &5, from which the result follows by
definition. By definition, neither terminate, thus we trivially have that (f{ vy, f9 v2) € [[7'2]]5:51 o6,
since fY7vy =~ f§ vy and neither steps to a value.

Now suppose that we know that (fi, fi) € [11 = 72] We want to show that
(i1, fitis

1 5 Twg) € [[7'2]]5151(_}52. By using Corollary 7.5, we just have to show that

77:51(—)52 :

(LA /gllon /21 S Br(e)), (S5 /allva/al [f3/ [(2(0))) € [72D5, 05,

Since the inner substitution for f was done in the definition of ff“ and fé“, the outer substitution
has nothing to substitute for and so we can remove it like so:

([v1/2][f7/91 (51 (e)), [v2/][3/9172(02(€))) € [72D5, 005,

Now define 7] = g — fi®z < vy and 74 = g — fi ® 2 < wve. By the inner induction
on n, we know that (fi, fi) € [= T2].6, 55, and SO (fi,fH € [n = T2].6, 55, Similarly,
we also know that (vi,ve) € [[Tl]]n:(;l(_)52. Thus, for IV = g : 71 = 7,2 : 71, we know that
Vi~ Y40 61 > d2]. But by our outer induction, we get that A;TV F e ~ e : 79, which tells us

that (31(d1(e)),75(d5(e))) € [[7'2]]2:5“_)52, which is exactly what we wanted to show, since the other
substitutions don’t have any effect.

Now that we know that (f{, fi) € [r = 7'2]]77:51 o5, for all 4, this is equivalent to saying that
(whll whll) ¢ [r = 72],.6, 55, for all i. We know by Corollary 8.2 that [11 = 72],.5 .4,
admissible, so by using the property of admissibility with e = w we get that (w/! [w],fwﬁ[w]) €
[= 2] or equivalently that (f1, f2) € [11 = 7] which is what we wanted to show.

is

n:014>02 n:8143027

Case for T'ccapp
Assume that A;T'F e "eg : 79 and v1 ~p Y2[n : 01 > d2]. We need to show that

(71(01(e17e2)), 7202 (1 e2))) € [72]7.5, 00

which is equivalent to showing that

(F1(81(e1)) A1 (1 (e2)), F2(82(e1)) F2(02(e2))) € [allis, crs

By induction we get that A;T'Fe; ~ ey : 7 = 7 and A;T'F es ~ ey : 71, which tell us that
(F1(61(e1)),F2(02(e1))) € [11 = Tolys, o0,

46

(F1(01(e2)), 72(02(€2))) € [T115s, 05,

This implies that 7; (3\1(61)) o~ /’)72(8\2 (e1)). Thus if 7y (8\1(61)) does not terminate, then neither will
95(2(e1)) by the above, and thus neither 31 (01 (1 ez)) nor J2(d2(e1"e2)) will by rule Eccapp;. The
same can be said about 7 (gl (e2)) and /7\2(3\2 (e2)). Thus the result holds in these cases, so we just
have to show it holds when all components terminate.

Now suppose that %(;5\1(61)) —* f1 and %(52(61)) —* fo for some f1, fo, as well as 31(31(62)) —*
vy and A2(d2(e2)) —* vy for some v,v’. But by the definition of the extension of the logical

relation to terms, we know from the above that (fi, f2) € [11 = 7], .5 s, and similarly that

(v1,v2) € [71],.5,055,- Then we know that (fi v, fo"v2) € [[7'2]]5:5“_}52 by the definition of the

logical type relation over closure-converted arrow types. But then v (gl(efeg)) —* f1"v; and
2(d2(e17€e2)) —* fo wg by our assumptions above and the Eccapp rules. From this we get that

(F1(01(e17e2), A2 (0a(e17e2)) € [alEg, oo,

as desired, by application of Corollary 7.5.

Case for Tpair
Assume that A;T' F (e1,e2) : 71 X 72 and 1 ~1 ¥2[n : 01 <> d2]. We need to show that

(F1(01({e1, 2))), F2(02((e1, €2)))) € [11 % T2, v,

this is equivalent to showing that

((31(01(e1)), A1(01(e2))), (F2(d2(e1)), F2(d2(e2)))) € [11 X Tolls, s,

By induction we get that A;T'F ey ~ ey : 7 and A; T F eg ~ e : 7o, which tell us that

(F1(01(e1)), F2(02(e1))) € [T11Es, 55,

(F1(01(e2)), 32(02(e2))) € [r2lfs, o5,

Then based on the Epair rules, clearly </’}71(8\1(€1)),/’}71(8\1(€2))\> o~ (%(32(61)),3%(32(62)» since
the same is true for the two projections. Suppose that 71(d1(e1)) —* vi, F1(d1(e2)) =" v2,
F2(d2(e1)) = vi, and F2(d2(e2)) " vy for some vi,v2, vy, v5. Then since (vi,v]) € [11],.5 s,
and (v2,v3) € [72],.5,05, Py induction, we know that ((v1,v2), (v1,v5)) € [11 X 7], 5 .5, as the
values are the corresponding projections (which we can do by applying Corollary 7.5). But then
again by Corollary 7.5 and using the Epair rules, we get that

(F1(01({e1, 2))), 72(02((e1, €2)))) € [11 % 7o, v,

as desired.

Case for Tproj
Assume that A;T'F me : 7; and v; ~p Y2[n : 01 <> d2]. We need to show that

(F1(01(mi€)), F2(02(mi€))) € [Tilks, oo

this is equivalent to showing that

(A1 (81(€)), mA2(02(e))) € [Tilks, 0,

47

By induction we get that A;T F e ~ e : 71 x 72 and (1(01(e)),72(32(e))) € [r1 x 7'2]]2:61<_>52.
Thus 7 (gl(e)) o~ ’/)/\2(8\2((2\)), which implies that 7; (gl (mie)) ~ /’)72(5\2(7['1'6)) by rule Eproji. Also, if
Y1(01(€)) —* v1 and F2(d2(e)) —* vo for some vy, vy, then we know (vy,vs) € [11 % TQ]]n:(;l(_)(;Q by

induction, and thus by definition (m;v1, mva) € [[Ti]]n: 5,455,- Lhen we can apply Corollary 7.5 to get

that (m91(81(e)), m92(62(€))) € [Tills, css,- as desired.

Case for Ttlam
Assume that A;T' F Aa.e : Va.r and 1 ~r 72[n : d1 <> d2]. We want to show that

(F1(01(Acve)), 72(02(Aave))) € [Var]rs, s,

To do this, we assume that 71 type, 72 type, and R € Val(ry) x Val(7y) such that R = R5T. Define
n=n®a<= R, =0 a1, and &, = Jy ® o < 175. We want to show that

(3151 (Aae))[11], A2 (Ba(Acve))[r2]) € [Tl s

this is equivalent to

(A (51(e)) 7], (AaFa(Ga(e))[r2]) € Vo] s 005,

as we can alpha-vary « to be a variable not included in the substitutions. By Corollary 7.5, we can
equivalently show that

([r1/a71(51(e)), [r2/alF2(02(e)) € [Vaml5 50

By induction we know that A, ;' e ~ e : 7. Since R = RS, 1/ : §] <> &} holds, and we also know
that v1 ~r y2[n : 8] <> 5] since the added variable « does not appear in any of the substituted
terms. By definition of logical equivalance, this means we know that

(F1(51(e)), 2(%5(e)) € [V s

which is equivalent to the desired result above by just separating out the substitutions for c.

Case for Ttapp
Assume that A;T'F e[r] : 7 and v ~1 72[n : §1 <> d2]. We want to show that

(F1(01(e[m])), F2(B2(e[m1]))) € [7]E 5,000,

We know that A;T' F e : Va.7/, where 7 = [11/a]7’. By induction, we get that A;T Fe ~ e : Va.r,
which tells us that

(F1(81(€)), F2(02(e))) € [Vor.T'TE 5, s,

This tells us that 7 (gl(e)) ~ %(32(6)), and if %(31(6)) doesn’t terminate, than neither does
M (gl(e[ﬁD), and similarly if 92(02(e)) doesn’t terminate, than neither does %(ggA(e[ﬁ])). Thus if
either 71 (d1(e)) or A2(d2(e)) doesn’t terminate, then neither 7 (d1(e[7’])) nor 42(d2(e[r1])) will, so
the desired result holds in this case.

Now suppose that 31 (6;(e[r1])) —* v1 and F2(d2(e[r1])) —* vo for some vy, vy (we know that if one
terminates, the other must as well). From what we got by induction, we know by the definition of
the extension of the logical relation to terms that (vi,v2) € [Va.7'], 5 .,s,- Define R =[71], 5 .5,
n=n®a<= R, =5 @a<=d(n), and 65 = §s ® a < Ja(71). By the definition of the logical
relation we know that R R

GG (el), T Galelri)) € [s

48

By Lemma 8.6, this is equivalent to saying that

(F1(@1(e[r))), A2(02(e[m]))) € M1/l s, 0,

which is equivalent to what we wanted to show, since 7 = [r /a]7’.

Case for T'pack
Assume that A;T F pack[r/,e]as Ja.7 : Ja.7 and 1 ~1 Y2[n : 61 ¢ d2]. We want to show that

(M (gl(pack[rl, el as Ja.7)), ‘y\g(gg(pack[rl, elasJa.7))) € [[HO"T]];Ey:&Héz

or equivalently

(pack[01 ('), 1(31(e))] as 01 (3a.7))), pack[da (1), 2(0a(e))] as b2 (3a.7)))) € [Baet]E s 1y,

Since we know what the value is, we know what the type in the existential is. Define R =[], 5 .5,
which is ST-closed by Lemma 8.1, as well as ’ = n®a — R, 0] = 61®@a < 11, and 05, = d2@a — 7.
Then by the definition of the logical relation we can just show that

(F1(01(e)), 72(52(e)) € [Ty,

But by induction we know that A, ;' - e ~ e : 7, which gets us the result above.

Case for T'unpack
Assume that A; T unpack|a, z] = ejiney : 7 and v1 ~p Y2[n : 01 <> d2]. We want to show that

(71 (5 (unpackfa, 2] = e ines)), 72(ds(unpack(a, 2] = e1 ines))) € [7]s s,

which, since we can assume that o does not occur in A and x does not occur in I', is equivalent to
Y1 ~r Y2[n : 81 <> d2]. We want to show that

(unpack|a, 2] = 71 (d1(e1)) inF1 (31 (e2)), unpackla, 2] = Fo(da(e1)) inF2(d2(e2))) € 705,55

By induction, we get that A;T'Fe; ~ e : da.m’ and A, o; T,z : 7' F ey ~ e : 7, which tells us that

(F1(81(e1)), F2(02(e1))) € [BonmTus, 5,

This tells us that %(8\1(61)) ~ /’)72(25\2(61)), and if ;)/\1@1(61)) doesn’t terminate, than neither does
71(01(unpack|a, z] = erine)), and similarly if 42(d2(e1)) doesn’t terminate, than neither does
¥2(02(unpack|a, z] = ejineg)). Thus if either 71(d1(e1)) or 2(d2(e1)) doesn’t terminate, then
neither 741 (01 (unpack[a,] = e ineg)) nor 75 (d2(unpack|a, z] = e1 ineg)) will, so the desired result

holds in this case.
Otherwise, we know that both % (3\1(61)) J and %(32(61)) 1, so thus there exist some v1, vy such

that 4, (31 (e1)) —* v1 and A2(d2(e1)) —* vo. By the definition of the extension of the logical relation

to terms, we know that (v1,v2) € [Fa.7'], 5 5,

We will need to use Lemma 7.7 to finish this case. First we will define R to be [3a.7'], 5 ..s,,
except without the additional ST-closure applied to it that it normally has. Also define
Q = [7],.5,¢55,» which is ST-closed by Lemma 8.1, and define the functions

g1 = Ay : Ja.7’. unpack|a, z] = y inJ; (8\1(62))

49

g2 = Ay : o7 unpack[a, 2] = y ina(02(e2))

Assuming that (vf,v}) € R, for Lemma 7.7 we want to show that (g1 v}, g2 v5) € QF. By
Corollary 7.5, this is equivalent to showing that

o~ o~

(unpack|a, 2] = v} in7;(01(e2)), unpack|a, z] = vh inJa(da(e2))) € QF

By the definition of R, which is from the definition of the logical relation, we know that there
exist 71 type, T2 type, and an ST-closed relation R’ C Val(r;) x Val(r2) such that (e},e5) €
[7']y:67 s, Where vy = pack[ry, ej]as3a.7’, vy = pack[m, €s]asJa.r’, 1) = n® @ — R,
5’1:51®a<—>71,and (5&252@904‘—)7'2.

Therefore we know that

Jo.7' unpack|a, z] = vf inF1 (51 (e2)) = [1/)[e} /2171 (31 (e2)) = 71 (5 (e2))

Ja.7’. unpack|a,] = v} inFa(82(e2)) — [r2/alleh/x]F2(82(e2)) = Fh(3h(e2))

where 7] =71 @z — €] and 75 = 72 ® & — €. We know that 7] ~rp .. 5[n' : 8] > 05] since
(€1, €5) € [7'],.61 »s, from above. Therefore, by induction we know that
1 2

(311 (e2)), Ab(Ba(e2)) € [Ty

We know that A F 7, so 7 does not contain «. Thus 7 = [7”//a]r for any 7. Thus we can
apply Lemma 8.5, which gives us that

(31(3 (e2)), 5(35(€2))) € [715us, v

Therefore, making use of Corollary 7.5, we have shown that (g1 v}, g2 v5) € QF, as desired.

Then by Lemma 7.7, we now know that for R, Q, g and go defined above, if (vi,ve) € R5T then
(91 v1,92 v2) € QE. We already know that (vy,ve) € [Ja.7'] = RST by definition, so therefore
(91 v1,92 v2) € QE. By Lemma 7.5, this is equivalent to saying that

~

(unpack|a, 2] = vy inJ1 (81 (e2)), unpack|e,] = vy inJa(Sa(e2))) € [[7]51:51952

Since we know that 7; (8\1(61)) —* v1 and :}/\2(3\2(61)) —* vg9, by rule Eunpack; we can again apply
Lemma 7.5 to get the desired result, that

(91(01 (unpacklo,] = e; ines)), 32(d2(unpack|a,] = 1 ines))) € [7]5s s,

50

9.2 Congruence
Lemma 9.2. IfC: (A;Tp7) ~ (A T'p7') and A;T e ~eg : 7, then A'; TV F C{er} ~ C{ea} : 7.

Proof. First, define the function f = Az : 7.C{z}. By our definition of contexts, clearly A’; TV I f :
7 — 7/, Assume that v ~p 7'[n : 01 +> d3]. We want to show that

(F1(B1(C{er})), 72(02(Clea}))) € [T, o,

but by our definition of f and using Corollary 7.5, this is the same as showing that

F101(f €1)),32002(f €2))) € [T 5,000,

which is also the same as showing that

F101(S)) A1 (81 (e1)):F2(02(f)) F2(d2(e2))) € [7'Ths, 0,

By Theorem 9.1, we know that

(F101()), 7202(1))) € [T = 7 T5us, o5

~

and thus clearly (71(51()A) A2
know that (1(31(e1)), 32(02(e2))

(f) € [t = 7'],.5,06, since f is a value. By assumption, we

2
)€ [[7']]5: 518, We consider two cases:

Ity (61(61)) does not terminate, then neither does 72 (;5\2 (e2)). Clearly, then, neither do
71(51() M1 (51(61)) nor Y2(d2(f)) 72(d2(e2)), by rule Eappy. This implies the desired result.
If 41 ((51(1)) 4, then also %(8\2(62)) ThlS means that there exist some vy, vy such that

o (51(61)) —* vy and F2(d2(e2)) —* va. Also, since we know that (31(01(e1)),92(d2(e2))) €
[[7']]77 51458,> We know that (vi,v2) € [[7']]77 51455,- However, by the definition of [t — 7], 5 .5,
tﬁls means that (71(51() vi,72(2() va2) € []]5:51%52' We can then apply Corollary 7.5 to get
that

(F101(f)) F1(01(€1)), 32(02(f)) F2(02(e2))) € [7'TEs, i3,

which is what we wanted to show. O

9.3 Respect for Contextual Equivalence

Lemma 9.3. Suppose that (eq,e2) € [[T]];E7:51H52. If e} =5, () €1 and el =5,(r) €2, then (€},€h) €

E
[[7-]]77:(51<—>52 .

Proof. We want to show that (e},e)) € [[T]]f):51<_>52. We first have to show that e} ~ e,. By
Lemma 5.1 and the assumption that € =5, (r) €1, We get that €] ~ e;. Similarly, we get that
ea ~ e),. We also get that e; =~ ez by the assumption that (e, e2) € [[T]]f']: 5,455,- Lhus by transitivity
of Kleene equivalence, we have that €| ~ ¢}, as desired. Now we just have to show that if ¢} —* v}
and e —* vy for some vy, vy, then (vy,v3) € [7], 5 .,s,- By the above it must then be the case that

* *
e1 —* vy and ey —* vy for some vy, v where (vq,v3) € [[T]]UZ(SIH&Q'

Suppose (f1, f2) € [[T]]f]:(;l(_%. By Lemma 5.7, we know that v} =5 () el and e; =5 VL and
thus by transitivity v} =5 (r) V1" Using the context C; = f1 o, we then get by Corollary 5.2 that
Ci{v}} ~ C{v1}, or equivalently f1 v} ~ f1 vi. By a similar method using the context Co = f3 o,

o1

we get that fo ve ~ fo v. Also, by the definition of the S operation, we know that f; v1 ~ fo vy

since (v1,v2) € [[T]]n: 5,455,- Lhen by transitivity we get that fi v] ~ fo vh. However, since fi and
S

f2 were arbitrary, this holds for all f1, f2, and thus we have that (v],v}) € [[T]]n':r(sl 55, Dy definition.

However, by Lemma 8.1, this means that (v}, v3) € [], 5 .5, as desired. O

9.4 Logical Equivalence implies Contextual Equivalence
Theorem 9.4. If A;T'Fep ~eg: 7, then A;T'Hep Zeo: 7.

Proof. Assume that A;T' - e; ~ ez : 7. Let C : (A;T'>7) ~» (->int) be a program context.
By Lemma 9.2, we know that - - C{e1} ~ C{e2} : int. Since the context is empty, we get that
(C{e1},C{ez}) € [int]¥, which by definition implies that C{e;} ~ C{ez}. Then by the definition of
contextual equivalence, A;T'Fe; Zeg: 7.]

9.5 Contextual Equivalence implies Logical Equivalence
Theorem 9.5. If A;T'Fe; Zeg: 7, then A;T'Fep ~eq: 7.

Proof. Assume that A;T' F e} = eg : 7 and that v, ~p 72[n : §1 <> J2]. We want to show that

(F1(01(e1)), F2(02(e1))) € [715us, cr5

We know that A;T'F e; = ey : 7. By repeated application of Lemma 5.3 to A;T'Fe; E ey : 7, we
get that R R R R
-;52(F) H 52(61) = 52(62) . 52(7’)

Then define 7} such that v}(z) = d2(y2(z)) for all z € T. Clearly then 74 : d5(T'), so by Lemma 5.4,
we get that

52(F(1)) =5, 02(Fa(e2))

which is equivalent to

~ -~

V2(02(e1)) =5,) V2(02(e2))

By Lemma 9.1, we know that A;T F e; = 1 : 7, which tells us that (31(51(e1)),72(32(e1))) €
[[T]]i 5,435,- Lhe result follows from this and the above derivation by applying Lemma 9.3. O

Theorem 9.6. A;T'Fe; Zeg:7iff A;THep ~eq: 7.

Proof. By Theorem 9.4 and Theorem 9.5. 0

52

10 Closure Conversion

10.1 Translation

We define the standard closure conversion type translation |7| and term translation A;T g e :
T ~> €.

The type translation is defined as follows:

o = a
|lunit| = unit
lint| = int
|71 X To| = |T1| X |72
|71 = 72| = Ja.((|71] X @) = |12|) X «
Va.1| = Vau|7|

|Fa.7| = Jau.|7|

We also define |I'| by |- | =- and [T,z : 7| = ||,z : |7|
The term translation is defined as follows:

Nx)=r71

A;Fl—smiTW.%RvaT

Runit

AT Fg O :unit ~ ()

Rintop

Rint A:T'Fger:int ~ €1 A;T'Fges:int ~ &
A;T'Fgn:int ~n m A;T'Fgerpes:int ~ é1pés

A;T'Fger:int ~é A;'bFges:7~wé A ThFges:T~wez .
- - ——— Rifz
A;T Fg ifz(eg, e, e3) : 7~ ifz(éy, €2, €3)

ATkger:mi~e1 AT'kFgey:m~ e . A;Thge:mp Xxmp~e i€{l,2})
— Rpair — Rproj
AT g (er,ez) : 11 X T2 ~ (€1, €2) A;T g me: 7 ~ mé
Aa;TFge:T~e A;Tkge:Var~ée Abgt type
Rtapp

A;T kg Aa.e : Va.T ~ Aa.e Rtlam AT bge[r] : [7')alr ~ e[|7']]

Atgt'type Ajabgttype A;Tkge:[r/alr~ée Roack
ac
A;T g pack[r/, e] as Ja.7 : Ja.T ~~ pack[|7'], €] as Ja.|7]| b

A;Tkger:3darm~é Ao l,x:mbges:m~é Abgmtype

Runpack
A;T g unpack|a, z] = ej iney : T ~ unpack|a, x] = €1 inés p

93

F'=x1:71,..,Zn : Ta A g Ttype
AT x:r, f:7—=7TFsge:T € Tepy = |71 X oo X |7

R
A;T kg fun f(z:7).e: 7 — 7 ~ pack[Teny, Jun

<(f/u?1 f(y 7] X Tenw)-[Pack[Tens, (f, m2y)] as |t — 7’|/ f]
[le/x][7717r2y/a;1]...[7717T2...772y/mn_1][ﬂg...ﬂgy/xn]é
)y (1, (o@n—1, xn)...)))] as |7 — 7|

ATkger:T—=7~é ATkFgers:7~ 6

Ra
A;T kg ey eg: 7'~ unpack|a, 2] = € in(mz) (€2, Tox) PP

10.2 Fix vs. Recursive Functions

There is a reason that we didn’t use the general fix for recursion. Using fix instead of recurisve
functions results in problems when doing closure conversion. What follows is an example showing
the problem that arises when using fix instead of inherently recursive functions. First, the static
and dynamic rules for fix would be:

A;Tx:The:T
AT Hfix (x:7)e:T

Tfix

fix (v 7)o o [3x (e r)efale

Now consider the term
fix (f :int — int). Az : int.ifz(z,0, f (z — 1))

This doesn’t really do anything interesting, but will demonstrate the problem. After closure con-
version, this translates to (assuming no context)

fix (f:int — int). pack[int — int, (\y : int x (int — int).ifz(my,0, E), f)

Where F = unpack|a, z] = moy in(mz) (my — 1,m2z). Define the above to be F. Then this will
step to N
pack[int — int, (A\y : int X (int — int).ifz(my,0, E), F)

This is because the whole term gets substituted in for f due to the definition of fix . Call the
above F’. However, for this to be a value, we need the inner term to also be a value (that is, the
term <Xy :int X (int — int).ifz(my,0,E), F)). But we just said that F steps to F’, so the
second term in the pair can make a step to F’. But wait, we just said that F’ can make a step,
as the second term in the pair in the pack can step. Thus this can step, and so on. Thus we
never actually get to a value, hence why fix was not used with closure conversion and recursive
functions were used instead.

o4

11 Language Conversion

11.1 Over and Back

We define two functions in the combined language based on types in the languages. The first is
over, : T — |7|, which takes terms in the source language and messes with them at the top level
to get their type to line up with the second language. The second is back; : |7| — 7, which does
the opposite, taking terms in the target language and messing with them at the top level to get
their type to line up with the source language. The two functions are mutually recursive and are

defined as follows:

11.2

over, = \r

overynit = AL :
ovVerint = AL :

AT

OVGI‘Tl X To -

overs v, = Af

oW
unit.x

int.x

T1 X To.(OVer, 1T, ovVer,,mx)

: 71 — To.pack|ry — Ty, <//\\y Dl X T = Te.

overr, ((may) (backn my)), f)]as|m1 — 7

overy,r = AL :

overg,, = AL :

back, = \x :
backunit = AT :
backint = Ax :
back, xmp = AT :

backy o = Af:
backyy , = AT :
backgy,r = AT :

Inverses

(Va.7).Aav.(over,(z]a]))

(Ja.7). unpack|a, y| = z in(pack[a, over,(y)] as |[Fa.7])

a.x

unit.r

int.x

|71 X T2|.(back,, m1x, back,, mox)

|71 — To|.Ay : 1. unpack[a, g| = f inback,,((m19) (over,,y, m2g))
Va.7|. Aa.(back, (z[a]))

|Ja.7|. unpack|a, y| = x in(pack|[a, back,(y)] as Ja.T)

Lemma 11.1. For all A;TFe:7and A;|T| e : T,

A;T F back,(over, e) Ze: T

A;|T| F over,(back, ¢') & ¢ : |7

Proof. By induction on the structure of 7.

If e does not halt, then clearly neither does back,(over; e), so clearly
A;T F back,(over, e) Xe: T

If e |, then e —* v for some v val. Then by the cases below we’ll have that A;T" - back,(over, v) =
v : 7 from which the desired result will follow from Lemma 5.7. We can do similarly with ¢/, which
if it does not halt we have the desired result, and if instead e’ —* v’ for v’ val, we can apply the
below and Lemma 5.7 to get the desired result.

95

Case for =«
In this case we want to show that

A;T F back,(overy v) Z v «

which is equivalent to
A;TH Az ax) (A o) v) 2o«

However we know that by our assumption that A;I'F v : « and Lemma 5.7,
AT E Az ax) (Az:az)v) 2 (A ax)v: o

ATH(Az:ax)v=v:«

The desired result follows from transitivity. Since back, = over,, the reverse inverse is identical
in this case.

Case for 7 = unit
In this case we want to show that

A;T F backypit(overyyiy v) 2 v :unit
which is equivalent to
A;TF (Az runit.z) ((Az : unit.z) v) = v :unit
However we know that by our assumption that A;T" - v : unit and Lemma 5.7,
A;TF (Az:unit.z) ((Az:unit.z) v) = (Az : unit.z) v : unit

A;TF (Az :unit.z) v 2 v :unit

The desired result follows from transitivity. Since backynit = overu,is, the reverse inverse is
identical in this case.

Case for 7 = int
In this case we want to show that

A; T F backipt(overipy v) =2 v : int

which is equivalent to
A;TF (Az:int.z) ((Az : int.x) v) 2 v int

However we know that by our assumption that A;I'F v : int and Lemma 5.7,
A;T F (Az s int.x) ((Az : int.z) v) 2 (Az : int.z) v : int
A;TF (Az:int.z) v 2 v :int

The desired result follows from transitivity. Since backiys = overiy, the reverse inverse is identical
in this case.

56

Case for 7 =7 X 1y
In this case we want to show that

A;T F backs, xrp(0Vers xrm, V) 20T X Ty
which is equivalent to
A;T F (Az | 7].(back,, m1x, back,, mx)) ((Az : 7.(over, mix,over,,mx)) v) 2 v : T

However we know that by our assumption that A;T - v : 7y X 72, so by rule Tproj that A;T +
m 11 and A;T'F mv @ 12, so by induction we have that

A; T F back,, (over,, mv) = mv: 1
A; T F back,, (over,,mv) = mov : Ty
Then using Lemma 5.7 and the above,

I+ . |7|.(back,, mix, back,, mox)) ((Ax : T.(over, mix,over ,max)) v)

(A
(Ax : |T|.(back,, 1z, back,,mox)) ({(over, miv, over,,mav))
=

= (back,, mi (over,, mv, over,,mv), back,, T (over,, v, over,, mv))

12

(back,, (over,, mv), back,, (over,,mov))

12

(v, V)

12

[

1 T1 X T

The desired result follows from transitivity. The reverse direction carries out in much the same
way.

Case fort=17 >
In this case we want to show that

A;T F backs, —r,(0very n, v) v i1 — To
which is equivalent to

A;TE (Af:|7]. Ay : 71.unpack[a, g] = f inback,, ((7m19) (over,, y, mg)))
((A\f : 7. pack[unit, (\y : |71| x unit.overy,(f (back,miy)), O)as|7|) v)

ST
We get by induction that for all A;T'F ey : 7 and A;T'Feg @ 7o,
A;T F back,, (overre1) ey : 7

A;T F back,, (overr,ez) = es : T

o7

Thus, using Lemma 5.7 the fact that A;T'F v : 74 — 72, we can show that

A;TE (Af o |7].Az : 7. unpack|a, g] = f inback,, ((719) (over, z,m2g)))

(A\f : 7.pack[unit, (Ay : |71| x unit.overy,(f (back, my)), O)]as|r|) v)

= (Nf :|7|.Az : 71.unpack|a, g] = f inback,,((m1g) (over, z,m2g)))
(pack[unit, (\y : |71| X unit.overy, (v (back,,my)), O) as|7|)

=)z : 71.unpack|a, g] = (pack[unit, (Xy :|71| X unit.overs, (v (back,, my)), O)]as|7|)
inback,,((m19) (over, z, mag))

=~ \z : 7y.backy, (11 (\y : |71| x unit.over,, (v (back, m1y)), O))"
(over,, z,mo Ny : |71] X unit.over,, (v (back,miy)), O)))

= \z : 7.backs, (Xy :|71| X unit.over,, (v (back,, my))) (over, z, ()))

{
(
= Az : 7y.backy, (over,, (v (back,, mi(over, 2z, (0))))
=)z : 71.backy, (over,, (v (back,, (over; 2))))

(

>~ Az : 1y.back,, (over,, (v z))
2 Az:T0 2

vIT

So the desired result follows from transitivity.

Now we want to show the opposite direction, that

~

A;|T| F overy, p(backy, r, v') =0 1 |1 — 1
which is equivalent to

A;|T| = (Af : 7. pack]T, (Xy i || x T.overs,, ((my) (back,, my)),)] as|7|)

((Af :|7]-A\y : 7. unpack|a, g] = f inback,,((m19) (over,,y, m2g))) v')
=~ 7|
We get by induction that for all A;|T'| Feg @ |71] and A; [T F eg @ |2,

A; || F over,, (back, e1) = ey : |71

A; |T| + over,,(backr,es) = eg : |12

Since v’ is a value, we can assume that v’ = pack[r/, (h, e)] as|r — 72| for an appropriate 7/, h, e,
where hval and eval. Thus, using Lemma 5.7 and the fact that A; |T'| o' : |71 — 72|, we can

o8

show that

A; T F (Af : 7. pack]|T, O\\y s || X T.overs, ((moy) (back, my)), f)]as|T|)
((Af :|7]-M\y : 7. unpackl|a, g] = f inback,,((m19) (over,,y, m2g))) v')
= (A\f : 7. pack]|r, O\\y :|m1| x T.overs, ((my) (back-miy)), f)]as|7|)
(\y : 7. unpack|a, g] = v’ inback,, ((w19) (over,, y, mg)))
=~ pack[r, (A\y : |71| x T.over, ((m2y) (backy,my)), Ay : 1.
unpack|a, g| = v’ inback., ((m19) (over,, y, m2g)))] as |7|
=~ pack[r, (Ay : |71| x T.over,, ((m2y) (back,,my)), \y : 1.
unpack|a, g| = (pack[r’, (h,e)] as |7]) inback,, ((m1g) (over,, y, mg)))] as|7|
= pack|r, </):y o 11| X T.overs, ((moy) (back,, my)), Ay : 11.
backy, ((m1(h,e)) (over,,y, m(h,e€))))] as|7]
= pack]r, <Xy 2 |m1| x T.overs, ((may) (back:m1y)), Ay : T1.
back., (h (over, y,e)))|as|7|: |7|
For conciseness, define F' = \y : 7j.back,,(h™(over,, y,e)). Thus all that we need to show is

A; || + pack][r, </)\\y : 11| x T.over,, ((moy) (back, my)), F)]as|r| = pack[r’, (h,e)]as || : |7|

From which the desired result will follow, since v' = pack[7’, (h,e)]as|7|. To show the above, we
will first use the coincidence of logical and contextual equivalence to instead show that

A; ||+ pack][r, </):y : 11| x T.over,,((moy) (back, my)), F)]as|r| ~ pack[r’, (h,e)]as || : |T|

Which means that we must show that for any 6; : A, d2 : A, and 1 : 6; <> 62, with
Y1 ~r| 21 2 01 <> 2], that

(011 (Pack[r, (Ay : || x T.over,, ((may) (back, my)), F)]as|7)), 02(F2(pack[r’, (h,)] as|7])))

€ [Ba.((Inl x a) = |n2|) x al,.5, s,

By definition, this is the case if there exists some ST-closed R C Val(r) x Val(da(7')) such that

((1(F1((Ay « 1| x T.overy,((may) (backs,m1y)), F))), O), (82(F2(h)), 52(F2(e))))
€ [((In1] x a) = [m]) x a5,

Where 8] = 01 @ @ <= 71 = T2, 0h = 62 @ a — 32(7’), and ' = n® a <= R. So just define

R = {(e1,€2) | (01(F1(F)), 1) € [7],:6,:5, and (02(Fa(e)), €2) € [7'],):5, 56, > Which is clearly ST-
closed. Then we just need to show that each of the projections are valid. By the definition of R,
we already know that (61(71(F)), 62(32(¢))) € [a],.51 5, s all that we have left to show is that

(1A : (1] x (11 =). (W (M, €)))), 02(F(h)) € [(I71] x @) = |72ll,y.50 5,
To show this we assume that (vq,v2) € [|71] X a]]n’i5i<—>5é and show that
1@ : (1] x (11 = 7). (W (miz, €))) 01, 62(Fa(h)) 02) € [172[T50.5 005,
Which by Lemma 7.5 is the same as showing

@11 (h(m1v1,€))), 82 (Fa (W 02))) € [I2ll.51005,

99

Since we know by reflexivity that

(01(F1(h)), 62(F2(R))) € L1l x ™) = |7all,.5, 655,
By definition we then just have to show that

(01 ((mrv1,€))), 82(Fa(v2)) € 11| X 715051 5,
We know by assumption that

(61(F1(mo1)), 62(F2(m102))) € 111151 0,
And by the definition of R, it follows that
(31(F1(€)), 02(Fa(m2v2))) € [T s,

So the desired result follows.

Case for 7 = Va.7’
In this case we want to show that

A; T F backyy.(overyq. v) 2 v : Vo.r'
which is equivalent to
AT (Az 2 |7]-Aaback, (z[a])) (Ax : T.Aa.over(z[a])) v) 2 v : Va.r’

However we know that by our assumption that A; T F v : Va.7’, so by rule Ttapp that A; T+ v[7"] :
[7" /a]T, so by induction we have that

A;T back,(over, (v[r"])) 2 v[r"] : [7"/a]’
Then using Lemma 5.7 and the above,
AT F (Az o |7|. Aaback (z]a])) (Az : T.Aa.over,(x][a])) v)
= (A\z : |7|.Aa.back,(z[a])) (Aa.over, (v]a]))
= Aa.back, ((Aa.over, (v[a]))[a])
> Aa.back,/(over,/(v[a]))
=~ Aa.v[a]

Vo1

The desired result follows from transitivity. The reverse direction carries out in much the same
way.

Case for 7 = Ja.7™’
In this case we want to show that

A; T F backs, ,(oversy v) 2 v : Ja.7’
which is equivalent to

A;T F(Az @ |7|. unpack|e, y] = z in(pack|a, back./y] as 7))

((Az : T.unpack|a, y] = z in(pack|a, oversy|as|7|)) v) £ v : Ja.7’

60

Using the fact that A;T F v : Ja.7’ and it is a value, we know that v = pack[r”, e|as Ja.7’ for
some 7", e such that eval by rule Tpack. We get by induction that for all A,a;T' e : 7/,

A;T F back,/(overe) Xe: 7
Thus using Lemma 5.7, we can show that

A;T F (Az :|7|. unpack|a, y] = = in(pack|[a, back,y]as 7))

((Ax : 7. unpack|a, y] = x in(pack|a, over/y| as|7|)) v)

I

(Ax : |T|. unpack[a, y] = x in(pack|q, back,/y] as 7))

(unpack|a, y] = v in(pack|a, oversy| as|T|))

12

(Ax : |7|. unpack[a, y] = x in(pack|q, back,/y] as 7))
(unpack|c, y] = (pack[r”, €] as Ja.7’) in(pack|a, over, y] as |7]))

& (Az : |7|.unpack|a, y| = = in(pack|a, back,y|as T ack T//,overT/e as |71
p p p

1

unpack|a, y] = (pack[r”, over €] as |7|) in(pack|a, back. y] as T)
pack[r”, ([7"/a]back,) (([7" /a]over,)e)] as T

>~ pack[r” e]asT

1

0

s ot

The desired result follows from transitivity. The reverse direction carries out in much the same
way.

Lemma 11.2. The functions over, and back, are inverses of one another. That is,
A;T'+back,oover; Zid: 7 — T
A; || F over; oback, = id: || — |7|
Proof. By the coincidence of contextual and logical equivalence, we can equivalently show that
A;T'+back,oover; ~id: 7 — T
Let v : T, 90 : ', 010 A, 02 : A, and 1 : §1 <> 2. Thus we can equivalently show that
(71(91(back: o over,)),72(02(Az : 7.2))) € [T = T],.5, 055,
which by the definition of function composition is the same as
(F1(81(Ax : 7.(back, (over, 2)))),72(52(Az : 7.2))) € [T = 71,5, 0,

To show this, we assume that (v1,v2) € [7], 5, .5, and show that

(/7\1(;5\1()\9: : 7.(back, (over; x)))) 1)1,;}/\2(8\2()\56 1 T.x)) vg) € [[7']]7]:5“_)52

which is equivalent to
(%(3\1(()\:1: : 7.(back, (over; x))) Ul)),’/y\g(gg(()\l' 1 T.Xx) v9))) € [[7_]]77:61<—>62

61

However, by Lemma 11.1 we know that

-~

1061 ((Ae : 7.(back, (over, @) v1)) =5) (41 (back, (over, v1))) =) F1(61(v1)) 5,y v1 i T

2 (02((Az 1 7.2) v2)) St) F2(32(v2)) 5, 1y v2 i T

So by Lemma 9.3 this is the same as shoing that (vi,v2) € [7], 5 s,, however we assumed this
already, so the desired result follows. O

62

11.3 The Back Relation

Lemma 11.3. If A,a Fg 7type and A I—SAT’type, then for any d1 : A, d2 : A, and 7 : 1 <> 2,
there exists an ST-closed relation R € Val(dy (7)) x Val(do(|7'|)) defined as

R = {(v1,02) | (v1, 02 (back,) (v2)) € [7]5s, 05,)

such that

(01(7 /alback,), 6s(back(jq)-) € [I7] = [/alr],s sy

-~

(3\1([7'/a}over7), 52(0ver[7"/a}7')) € [[[T,/Q]T - |7-H]77’:6’1<—>65

Where ' = n®@a < R, &, = 6 @a < 61(7'), 6, = Sy @ < d5(|7|), We know that R is ST-closed

because it is defined in terms of [/]]g 5,455,> Which is itself ST-closed.

Proof. By induction on the structure of 7.

Case for 7 = unit
In this case we want to show that

(&([T'/Q]backunit),gg(back[T//a]unit)) € [lunit| — [T’/a]unit]]n,:(;/ﬁ_%

This is equivalent to

(backynit, backyyit) € [unit — unit]]n’:5’1<—>6§

This follows immediately from Reflexivity. The case for over works exactly the same.

Case for 7 = int
In this case we want to show that

(01([7' /a]backint), da(back(jajin)) € [lint| = [7'/alint], .5 .5

This is equivalent to

(backint, backint) € [int — intﬂn’:é’lHﬁé

This follows immediately from Reflexivity. The case for over works exactly the same.

Case for T =«
In this case we want to show that

(01([7'/albacka), 02(back(r/a)a)) € [laf = [7'/a]o], 5 0
This is equivalent to

(G1([7'/a) Az : @), ds(backs)) € [a = 7],

<04
And similarly equivalent to
Az : 01(7).x, 92 (back,)) € [a — T/]:Inlzéi

A
05

To show this we assume that (v1,v2) € [a],.5 5, which implies that (v1,v2) € R, and show that
((Az : 61(7").x) v, 62(back,s) v2) € [[T,]]TE]/:(;i(_)(gé

63

However, since 7/ doesn’t reference «, we can equivalently show that
(v1, 62(backy) v2) € []}.5, 55,
This follows immediately from our definition of R.

Now we need to show the other half, that
(01([7'/alovera), 02(over | /a))) € [[7'/ala = [l 500
This is equivalent to
(61([7'/a](Az : c.z)), 82 (over,)) € [— a]]n/:5/1<_>5é
And similarly equivalent to
Az : 01(7).x,02(over)) € [T/ — a]]n’i5i<—>5§
To show this we assume that (v1,v2) € [[7"]]77/:53H 5> and show that
(Az: 01(7).2) vy, d2(over,) vy) € [[oz]]ﬁ/:(;/ﬁ_ﬂ;é
This is equivalent to showing that
(v1,02(over,/) ve) € [[a]]E/:(;iH(gé
Which is the same as showing that (vq, gg(overT/) ve) € RE. We know by Lemma 11.1 that
v2 &5,) 82 (back,) (d2(over,) vs)
So by Lemma 9.3, we know that from our assumption that

(v1,02(back,) (da(over,:) v2)) € ['I5.5r sy

Since v |, this implies that gg(overff) vy |}, so we have that gg(overT/) ve —* vl for some value
vh. Then we know by Lemma 7.5 that

(v1, 62(back,) Ué) S [[T/]]g/:(;/l(_ﬂ;é
But by definition this implies that (v1,v}) € R, and therefore that (vl,EQ(overT/) vy) € RE.

Case for 7 =1 X o
In this case we want to show that

(01([7'/a]backs xr,), 62(back(ja)(r xr))) € [IT1 X T2l = [7'/a](T1 X 72)],1.61 05,
To show this we assume that (vi,v2) € [|71 % T2|]]Tl’i5i<—>5é’ and show
(61([r' /aJbacks xr,) V1, 02(baCK(j0)(ry xry)) v2) € [[7'/)(T1 X T2)]0.51 05
By the definition of back, this is the same as showing

(3\1(([7"/04]()\50 s |11 X T2|.(back,, (m12), back,, (max))))(v1)),

~

da(Az = [[7'/a] (11 % 72)|.(backy jar, (M1), Dackyy a)r, (122)) (v2))) € [[7'/a](T1 X 7o) 57 5

64

By Lemma 7.5, this is equivalent to showing

(B1({([7'/aJbacks) (miv), (['/albacky,) (r2v1))),

(52(<1)23.Cl{[7.//&].,.1 (7['11)2),baCk[T//a]TQ(ﬂ2U2)>>) € [HT//OJ]Tl X [T//OJ]TQ]]ﬁ/:(;/l(_H;é

Then using Lemma 8.3 for pairs we just need to show that
(61(([r' /aJbacky) (mv1)), 82 (backp o), (T102))) € [[7'/almily 5 05

(31(([7' /abacks,) (m201)), b2 (backiy jajr, (T2v2))) € [[7'/almal 5 s,

However by induction we get that
(01([7'/e]backs,), d2(back(/a7,) € [ITa| = [7'/almi],y g1 00

(01([7'/aJbacks,), ds(back(/a)r,)) € [I72] = [/l 2, 50 oy

We also know by our assumption and the definition of the type relation that (mwjvi,mive) €
[HTlH]E’:(S;f—Mé and (movy, ToU2) € [[|72|]]§':51<—>6§’ from which the desired result follows by Lemma 8.3
for functions.

Now we want to show this for over as well, so we want to show that
(O1([7'/aJovers, xr,), 02(0Ver(r ja)(n xr))) € LT /al(T1 X 72) = |11 X o]0 1,

To show this we assume that (v1,v2) € [[7'/a](m1 X TQ)]]W/:5/1<_>5§, and show

(01([7 /alovers,xr,) V1, 02(0Ver (1 ja)(ryra)) ¥2) € [IT1 X Tall50.s7 oy
By the definition of over, this is the same as showing
(31([7"/04])\:6 : 71 X To.(over, (mx), over,, (max)) v1),
Sa(Az : [/a](r1 X T2)-{0Ver (s julr, (T1T), OVeT (1 jary (T22)) v2)) € [T X ol [y sy

By Lemma 7.5, this is equivalent to showing

(G1((([7' /aJovers) (mw), ([7'/aJoverr,) (mavn),

~

02((over (s ajr, (T1V2), 0OVeT 11 alr, (M202)))) € [IT1 X T2ly.51 5

Then using Lemma 8.3 for pairs we just need to show that

~

(01((['/alovers,) (m1v1)), da(over ps jar, (m102))) € [IM[L 5105,

~

(01(([7' /aJovers,)(m2v1)), b2(0veT s jujr, (m2v2))) € [Ima[T5r51

However by induction we get that

-~

(01(['/a]over~,), ds(over(y /o)) € [['/a]m = |71[],y.51 00

(01([7' /aJovers,), da(over(y ju)r,)) € I /alra = |72l .51 s,

We also know by our assumption and the definition of the type relation that (mv1,mve) €
ks /04]7'1]]5),:5, s and (mauy, mov) € [[[T//ahg]]‘:‘],:(;i sy from which the desired result follows by
Lemma 8.3 for fzunctions.

65

Case forr =1 > m
In this case we want to show that

(01([7' /abacky, -.r,), 32(bacK(o) ry))) € [IT1 = 7o = [/ (Tt = 7)), 00,

We assume that

(f1, f2) €l = 2l sy = [3B-(Iml x B = |m2]) X Bly.61

So by definition we just need to show that

(01([7' /albacke, —yr,) f1,02(baCK ol s jalrs) f2) € [[7' /)T — L)

However, this no longer depends on «, so we can just show that

(01([7'/a]backs sy J1),02(0aCK(jajr, (7 jalrs J2)) € [[F' /0] = [/a] 7] 5,005,

By the definition of back this is the same as showing

(61(([7'/a](\f |71 — | .My : 71. unpack[B, g] = f inbacky, ((m1g) (overs,y, mg)))) f1),
32(()\]‘" [Jalm — [T /alm] Ay : [7' /a]T. unpack[B, g] = f in
back(s /alr, (119)~(0Ver | jajn ¥, m2g))) f2)) € [[7'/alm — [7'/almalys s,

Then by Lemma 7.5, this is equivalent to showing

(01((Ay : [r'/a]r1. unpack[B, g] = f1 in([7'/a]backy,)((m19) ([/a]overs,)y, m2g)))),

S2(\y : [7'/a]Ti. unpack|B, g] = f2 inback(s /a)r, ((119)"(0Ver(r /0 ¥, m29))))

€ [l7'/alm = [7'/almal5, 005,

To show this we assume that (v1,v2) € [[7'/a]71], 5,5, and show that

~

(61(Ay : [r'/e]m. unpack(B, g] = f1 in([7'/aJback:,) ((m19) (([r'/e]overs,)y, mag))) v1,

d2(Ay : [7'/a]mi. unpack[f, g] = fz inback|y /a)r, ((T19) (0ver|y o) ¥, T29))) v2)

€ [l /almls, o6,

Then by Lemma 7.5, this is equivalent to showing

(31 (unpacklf, g] = f1 in([7’/a]backy,)((m1g) (([r'/alovers Jui, m29))),

02 (unpaCk[ﬂa g] = f2in baCk[T’/a}Tz((ﬂ-lg)/\<over[’r’/a]ﬁv27 7729))))
E
€ [[[T//a]TQ]]n:51<—>52
Since fi is a value, we know by rule Vpack that it is of the form pack|r],¢1]as|m — 72| for

appropriate type 71 and value g;. Similarly we can write fo as pack[rs, g2] as|m1 — 72|. Thus we
can show that

(91 (unpack(B, g] = pack[r{, 1] as |11 = 72| in([r'/a]backy,) ((m1g)((['/]over Ju1, m29))).

d2(unpack|, g| = pack(ry, g2] as |11 — 72| inback(/a)r, ((M19) (0ver(r /ajr v2, T29))))

€ [I7'/a]mls, o6,

66

Thus by Lemma 7.5, we can just show that
(81(([7 /abacks,)((m191) ([/alovers, Jv1, mag1))),
02(back(r /o), (T192) (0VeT (/o) v2, m292)))) € [[7'/alT2ls, s
However since we know by induction that
(01([r'/a]backr,), 02(backp/a)r,)) € [I72] = [7'/a] 7], 5 o

So by Lemma 8.3 we just have to show that

~

81 ((mg1) "~ (([7' /aovers, Jv1, mag1)), 6a((7192) ~(OVeT s atr V2, T2g2))) € [I72115 51 50,

Now by our assumption that (f1, f2) € [|71 — 7'2‘]]77’:6{965’ we know that there exists a relation
R’ C Val(m) x Val(rz) such that

(91,92) € [(Im1] x B = |72|) x Bﬂnffzag'eag
Where §f =01 ® 8 — 71, 0§ =0, ® 3 — 75, and " =’ ® B — R’. This tells us that by definition,
(m191,m192) € [IT1] % B = [72[l50.5005,

(m291, m2g2) € [[5]]5”;5';@65’

We also know by induction that
(01([7'/alovers,), d2(overy o)) € [[7'/ el = I7i[l.5
Which by definition tells us that
(01(7' /aloverr,) w1, bx(over(yjajr,) v2) € [IT1lT5 510

Which then by Lemma 8.3 for pairs we know that

-~

(61({[7' /a]overs,) v1,m201), b2({0Ver /a1,) V2, mag1)) € [Im1] % Bl s sy

Then again by Lemma 8.3 for functions we know that

~

01((m1g1) ([/a]overs, Ju1, m291)), 0a((T192) “(OVeT (s /ajr, V2, T2g2))) € [Im2l5r.s1 oy

Which is what we wanted to show.

Now we need to show the corresponding case for over, that is

(01([7 /aovers, r,), 32(0VeT(r fa)(ri) € [[7'/)(r1 = 72) = 11 = 7ol 0

We assume that
(f17 f2) € [[[T,/OZ] (Tl - 72)]]77/:5/1(—)5/2

So by definition we just need to show that

(gl([T,/a]overTlﬁTz) flv8\2(over[T’/a}Tl—>[T’/a]Tg) f2) € [[|7—1 - 7'2|]]2/:51<_>5£

67

By the definition of over this is the same as showing

(31(([7"/04]()\f : T1 — To.pack[r — To, <Xy Dl X (11— 7).
overr, ((may) (backs, (m1y))), f)]as |1 — 7)) f1),
So((Nf [T Ja)r — [/o). pack|my — 72, My« |[7/a]mi| X (11 = T2).

over(/ajr, ((m2y) (backy /o)y, (m19))), f)l as|[r'/a]r — [7'/a]r]) f2)) € [T = 2[lp5 00
Then by Lemma 7.5, this is equivalent to showing
(81(]7' /o] pack|ri — T2, (Ay : |71| X (11 = T2).0ver, ((may) (back., (m19))), f1)] as |1 — 72|),
do(pack|r] — T2, (/):y A Jalm | x (1 — T2).0VeT [/a]7, ((T2y) (Packir/a)r, (T1Y))), f2)]

as|[7'/alr = [7'/a]r2)) € [3B.(In] x B = |7a]) X Blyy.57. 620,

To show this, we pick R’ = [[7//a](t1 = 72)] and use the definition of the type relation to show
that

(17 /] Ay « 1| x (11 = T2).0vern, ((may) (backy, (m1y))), f1)),
d2((Ay = |[7'/a]mi| x (11 = T2).0ver[y /q)r, ((T2y) (back(y o)y, (T19))), f2))
€ [(Imi] x 8= |72]) X Blyrsp sy

Where §f =6} @ 5 — [7//a](11 = T2), 0§ =65, 5 — [7'/a](11 — 72),and 0" =1 @ § — R’. We
already know that (f1, f2) € [[B]]nu:(;i/ ol = R’ = [[7'/a](m1 — 72)] by assumption, so by definition
we just need to show that

G1([7' /)Ny = 71| X (11 = T9).0vern, ((my) (backs (m19))))),
52(Xy A Jalm] x (11 — Tg).over[T//a]TQ((Wgy) (back[T//a]T1 (m1y)))))
€ [[|Tl| X 8= |72|]]77”:5{'<—>6§’

To do this we assume that (vi,ve) € [[|71]| X ﬂ]]n”:5’1’<—>5§’ and show that

(G1([7' /)Ny : 11| x (11 = 72).0ver, ((m2y) (backs, (m1y))))) v,
3y = [falmi| x (11— 72).0veT | ja)r, (T2y) (backiy ja)r (T13)))) v2)
e [Imall,oesy
So by Lemma 7.5, this is equivalent to showing
(81((['/aJovers,)((mav1) (([r'/albacky,)(m1v1)))),
02 (OVeT(jary (Ta02) (0ACK]s /o), (M102))))) € [I72],yr.s7 5

However by induction we know that
(01(7 /alovery,), ba(over(/a)r,)) € [[7'/alma = |72ll,y.51 o

So by Lemma 8.3 we just need to show that

~

(31((mav1) (([7'/aJbacks,) (m1v1))), da((m2va) (baCk(/ajr, (T102)))) € [[F' /] ol g0 sy

68

By assumption we know that (movy, movs) € [[/B]]n/:(yl(_)(sé = [l7"/a)(rn — 7‘2)]],]/,:5/1/655,, so again by
Lemma 8.3 this is the same as showing that

(01(([7'/a]backy,) (m1v1)), da(back(ju)r, (1102))) € [[7'/almi i gy
We also know by induction that
(01(7 /albacky,), da(back(/a)r,)) € [I11] = [7'/almi],y.50 o,

So by Lemma 8.3 all we have to do to show the above is show that

~

(51(7T11)1)73\2(7f1”2)) € [[|7'1H]5":6’1’<—>5g

However this follows from our assumption that (v, vs) € [|71|x 8], 51 ersy» and so the result follows.

Case for 7 = Vj3.7"

In this case we want to show that
(8\1([T//Oé]baCkv5,7-//), 8\2 (baCk[T’/a](Vﬁ.T”))) € [HV,B.T”| — [T//Oé] (V’B'T//)]]W“‘%H&é

Then we assume that (vy,vs) € [|VB.7" 11,y 51 >3, and so by definition we just need to show

(&([T'/Ox]backvﬁju) 'U]_,gQ(baCkVB‘([T//a}TN)) vy) € [[VB.([T//O{]TH)]],,E]/:&{H%

By the definition of back, this is equivalent to

(5\1([7’/04]()\96 . |VB.7"|.AB.back,~(x[A])) v1),
5o\ VBT ABbACK o (218])) v2) € VA7 Ja) [Er iy,

Then by Lemma 7.5, this is equivalent to showing

(61(AB.([7' /alback») (v1[B])),
02(AB.DaACK s /o1 (v[8]))) € VB[/o))y s,

Then by definition, we just need to show that for all 7 type, 7 type, and R’ C Val(ry) x Val(rs)
s.t. R/ = R’ST,

(51(AB.([7' Ja]back.) (v1[8]))[r],
82(AB.backy o) (v2[B]))[2]) € L[falr") s st

Where 6 =0 @8 < 1, 05 =0, 8 < 1, and 0" = ® B — R’. So by Lemma 7.5, this is
equivalent to showing

(&1(([7'/aJack.) (v1[n1])), 62 (back ajr (va[72)))) € [([7'/alm") gy sy
However, we get by induction that
(51([7'/04]back7u),6§(back[7//a}7u)) e[l = [T//Oé]T,/]]n//:(;/l/(_ﬂ;g
And by our assumption and the definition of the type relation we know that

(o1, valra]) € U7 Do sy sy

69

So with the above, the desired result follows by Lemma 8.3 for functions.

Now we want to show the same for over, which is that
(01([7'/aJoverys o), 0a(over(y /ajws.m)) € [[T'/l(VB.7") = VB.7"I], 61008,

Then we assume that (v1,v2) € [[7'/a](V8.7")],. 51 »5» and so by definition we just need to show

(31([7 /aJoveryg) v1, ds(overys (rrajrm) v2) € [VB.1T" I35 sy
By the definition of over, this is equivalent to
G1([7' fa](Ax = (YB.7").AB.over,(z[8])) v1),
Sa((\a : (VB.7").AB.over o1, (x[B])) v2)) € [[VB.\T”H],E]/:(%H%
Then by Lemma 7.5, this is equivalent to showing
(51 (AB.([7' /a]over,»)(vi[B])), d2(AB.over|rs a1 (v2[B]))) € [VB.17"11,:5, 5,

Then by definition, we just need to show that for all 7; type, 72 type, and R’ C Val(ry) x Val(rs)
s.t. R’ = R’ST,

(01(AB-([7' /afover) (vi[B])[1]), 02 (AB-over s o) (va[B]))[72]) € (17" [y sy

Where 6] =8 @8 — 1, 0] =8, ®8 < 1, and n” =1 @ B — R’. So by Lemma 7.5, this is
equivalent to showing

~

(01(([7'/aJover) (vi[m])), d2(over rs jajr (va[72)))) € [7" Iy crsy
However, we get by induction that
(01([7'/a]over), By (over(y /oen)) € [/] = |7 (], m50

1"
04

And by our assumption and the definition of the type relation we know that

(v1[r1], v2[m2]) € [[[T,/Q]T”]]E”:égﬁég

So with the above, the desired result follows by Lemma 8.3 for functions.

Case for 7 = 38.7"

In this case we want to show that
(01([7" /a]backsg 1), 02 (backy /o) @s.+1)) € [|38.7"| = [T,/a](flﬁ-T")]]n/;(siHa;
Then we assume that (vi,v2) € [[\ElB.T”H]n,:ylHéé, and so by definition we just need to show
(51([Tl/a]back3,3_7u) V1, 52(back35.([7.//a}7.//)) 1)2) € [[Hﬁ.([T//Oé]T”)]]?/:(;/lH%
By the definition of back, this is equivalent to

(gl([T’/a](Ax :|38.7"|. unpack|s3, y] = = in(pack|B, back.(y)] as IB.7")) v1),
Sa((A\z ¢ [3B.[7' /a)r"|. unpack[B, y] = = in(pack[s, back(, /o) (y)] as 3B.[7" /a]r")) v2))
€ [36.([7" /alm" .51 56

70

Then by Lemma 7.5, this is equivalent to showing

(01 (unpack[B, y] = v; in(pack[B, ([7'/alback.)(y)] as IB.[7"/a]r")),

02 (unpaCk[/Ba y} =2 in(paCk[67 baCk[T’/a]T” (y)] as 36.[7”/0&]7’”)))
€ [[3/8-([7’/&]7")]]5;5/1%&

Since (v1,v2) € [3B.|7" |]]77,:5/1 o by assumption, we know by definition that there exist 71 type,

Ty type, e1val, eaval s.t. v1 = pack[r,e1]as3B.[7/a]|7”| and vy = pack|r, es] as IB.|[7/a]T”|,

as well as a relation R’ such that (e, e3) € [[|T”|]]n,,:5i,<_>5g, where 0] = §1®8 < 11, 65 = §,@8 < T,
and n” =n' ® 8 < R’. Thus we have that equivalently,

(91 (unpack(8, y] = pack[ry, e1] as I5.[r'/a]|7"| in(pack(B, (['/a]back.)(y)] as IB.[r' /a]r")),
02 (unpack[B, y| = pack[rs, es] as I3.|[7/a]"| in(pack(B, back ja), (y)] as 3B.[7' /a]7")))
€ 38.-(17' /" y.51 55
Then by Lemma 7.5, this is equivalent to showing
(31 (pack[r, ([/B][r'/a]back,) (e1)] as 3B.[r' /a]r"),
3\2 (pack|re, ([Tg/ﬁ]back[T//a]T//)(eg)] as 383.[7'/a]T"))
€ [38.([/")51 o

We can then use the types and values from vy and v as the ones that exist to make this hold by
using Lemma 8.3 for existentials, and use the relation R’ so we just have to show that

Gu(([r/ B[Jalback,) (e1)), Bal([72/ Blbackiy ajrr)(€2)) € [I7 /el o srirsy
However by induction we get that
(01([1/B)[r" /aJback.), ds([7a/ Bbacky japn)) € IIT"| = [7'/al7"] yr.s sy

And we already know by our assumption as shown earlier that (e, e2) € [|7”(], . 51y SO combining
this with what we get by induction, the desired result follows.

Now we want to show the same for over, which is that
(01([7"/a]oversg i), d2(over | /a3s.rm)) € [[7'/a](36.7") — ’35-7'”|]]n/:51<_>5§

Then we assume that (vi,v2) € [[[T//a](H/B.TN)]]n/:(;i(_}%, and so by definition we just need to show

(51([7' /a)overag ;) v1, 62(0versg (frr jalrm)) V2) € [138-7" 1551 5,

By the definition of over, this is equivalent to

(1(['/a](Ax : 387" unpack[8, y] = z in(pack[B, over,(y)| as [38.7"])) v),

d2((Az : 3B.[7"/a]7". unpack[B, y| = x in(pack[B, over(, a) (y)] as [3B.[7/a]T"])) v2))
e [138-7" 15105,
Then by Lemma 7.5, this is equivalent to showing
(31([' /] unpack(8, y] = v1 in(pack|3, over,(y)] as [3.7"])),

gg(unpack[ﬁ, y| = vo in(pack|f, OVer(|r /q)r (y)] as |38.[7'/a]7"])))
€ 387" 1y 5755

71

Since (v1,v2) € [3B.[7"/a]T”] o8, 8 by assumption, we know by definition that there exist 71 type,
Ty type, e val, egval s.t. v; = pack[r,e1]as 3B.[7'/a]r" and vy = pack[r, es]as IB.[7'/alr”, as
well as a relation R’ such that (e1,es) € [[[T//Q]T”]]nu:(;i/(_}ég, where 0] =0 ® B — 71, 0] =053 —
79, and 1" =1’ ® B < R’. Thus we have that equivalently,

(31([7"/04] unpack[3, y] = pack(ri, e1] as 3B.[7" /a|7” in(pack|B, over,~(y)] as |3B.7"|)),

-~

do(unpack[,y| = pack|r, ez] as 36.[7"/a]r" in(pack|B, over(y /o)~ (y)] as |3B.[7/a]T"])))
€ [138.7"Ny.51 55

Then by Lemma 7.5, this is equivalent to showing

(31 (pack[r, ([11/8][7' /alover,)(e1)] as|[r'/a]|3B.7"),
SZ(PaCk[Tz, ([T2/5]Over[ﬂ/a}7,,)(62)] as |E|ﬁ-[7'//oz]7”)

E
€ [3817" 151008

We can then use the types and values from v; and v as the ones that exist to make this hold by
using Lemma 8.3 for existentials, and use the relation R’ so we just have to show that

(01(([1/B)[7' aJover i) (e1)), da(([r2/ Blover(r jajr)(€2))) € [T [Timsyessy

However by induction we get that
(3\1([7'1/@ [TI/Oé]OveI‘T//),gg([Tg/ﬂ]Over[T//a]T//)) e [l /a)r" — |T”|]]77”251’H5§’

And we already know by our assumption as shown earlier that (e1,e2) € [[7'/a]™"] 5005, 50
combining this with what we get by induction, the desired result follows.

O]

72

11.4 The Over Relation

Lemma 11.4. If A,a Fg T7type and A I—SAT’type, then for any d1 : A, d2 : A, and n: 1 <> 02,
there exists an ST-closed relation R € Val(d1(|7'])) x Val(dz(7')) defined as
R = {(v1,v2) | (v1,02(0ver,) (v2)) € [|7'[55, 5,
such that R R
(01([I7'|/alback;), d2(back/a)r)) € [T /alT] = T],y5 000
(01([I7'|/alover;), d2(over/a),)) € [T — |[7'/e] T[], 5 000

Where ’ =n®@a < R, 0] =01 Qa — su(|7)), 8 =0ha— 52(7"), We know that R is ST-closed

because it is defined in terms of |7’ H]g 51¢36,» Which is itself ST-closed.

Proof. The proof is done by induction on the structure 7, and follows in much the same manner as
Lemma 11.3.

Case for 7 = unit
In this case we want to show that

(gl([’7/|/a]ba0kunit)a SQ(baCk[‘r//a}unit)) € [’[T//a}unit’ - unit]]ﬁ’:éi(—)éé

This is equivalent to

(backynit, backynit) € Junit — unit]]n/:(;/lH%

This follows immediately from Reflexivity. The case for over works exactly the same.

Case for 7 = int
In this case we want to show that

(31([|7'|/a]backsnt), 62(back| /ajine)) € [|[7'/alint| — int], .5 .5

This is equivalent to

(backipt, backinyy) € [int — int]]n/:(;iﬁ(gé

This follows immediately from Reflexivity. The case for over works exactly the same.

Case for 7 = o
In this case we want to show that

(01([I7']/elovera), d2(over(jaja)) € [a = |[7'/alal], g1y
This is equivalent to
O1(I7l/)Nz = a.w)), 02 (overr)) € [a = |7'[] .61 0,
And similarly equivalent to
Az : 61(|7']) ., 02 (over)) € [—]7"|]]77/:5/1

!
<05

To show this we assume that (v1,v2) € [a],. 51 »5,» Wwhich implies that (v1,v2) € R, and show that
= < E
(O s 51(7]).) w1, Ba(overs) v2) € [17 sy

73

However, since |7/| doesn’t reference a, we can equivalently show that
(v1, 62(0very) v2) € [|7'[[.5, 55,

This follows immediately from our definition of R.

Now we need to show the other half, that
(B1([7'|/afbacky), da(over(ri/aja)) € [l /a]al = |all,y.s s
This is equivalent to
Gr([I7'|/a) Az - a.2)), b (backs)) € [I7'] = alysy
And similarly equivalent to
(Az : 61(|7'|).z, 02 (back,)) € [|7'] — a]]n’:5i<—>5é
To show this we assume that (vi,v2) € [[|T’|]]n,:5,1<_)5£, and show that
(Az = 81(|7'])-x) 01, Ba(backy) vs) € [alfs s
This is equivalent to showing that
(v1, 62(back,) vg) € [[a]]iu(sgeag
Which is the same as showing that (vq, gg(backT/) v9) € RE. We know by Lemma 11.1 that
V2 %32(7,) gg(overT/)(gg(backT/) v2)
So by Lemma 9.3, we know from our assumption that

(v1, 62(over,)(d2(back,) va)) € [HT,H]E’:(S’IH%

Since v |, this implies that gg(overff) vy |}, so we have that gg(overT/) ve —* vl for some value
vh. Then we know by Lemma 7.5 that

< E
(v1, d2(over,) v3) € [I7'[] .67 55,
But by definition this implies that (v1,v5) € R, and therefore that (’Ul,S\Q(baCkT/) v9) € RE.

Case for 7 =1 X o
In this case we want to show that

(O1([I17l/aJovers x,), 62(0ver|r ja)(r xry))) € [T1 X 72 = |[7'/Q](T1 X 72)[]y.57 55,
To show this we assume that (vi,v2) € [71 X Tg]]n,:5i<_)5/2, and show
(O1([I17'l/alover s xr,) v1,02(0VeT(r ja)(r xry)) v2) € [T /a](T1 X 72)[I.51 00,
By the definition of over, this is the same as showing

(3\1((“7’/\/(1]()\:1: : 71 X T9.(over,, (mx), over,, (mex))))(v1)),

Sa(Az : [1'/a] (11 X T2).(0Ver s sl (T12), OVET [y 1, (M)} (v2))) € [|[7' /] (11 X)Ly .67 55

74

By Lemma 7.5, this is equivalent to showing

(G1({([I7'|/a]overs) (mw), ([|7'] /aloverr,) (mav1))),

~

)
02({over(y jajr (T102), OVeT [y o, (1202)))) € [l /el | x [[7' /o] 7a[Tyy.s; 5,

Then using Lemma 8.3 for pairs we just need to show that

~

G (([17')/alovers,) (m101)), 82(0veT iy jajr, (102))) € [l falrilTEr sz o,

(G1(([[7'|/aovers,) (mav1)), d2(0VeT (s jair, (m2v2))) € [|[7'/a]7a[T5.s s,

However by induction we get that
(O1([|7']/aJovers,), d2(over(r/a)r)) € Iri = |[7' /o]l 00

(01([I7'|/aJover,), d2(over(r jajr,)) € [r2 = |[r'/al2ll 5y,

We also know by our assumption and the definition of the type relation that (mjvi,mive) €
[[71]]2,: 525, and (mouy, move) € [[7'2]]2,:51 o, from which the desired result follows by Lemma 8.3
for functions.

Now we want to show this for back as well, so we want to show that
(B1([7'|/adbacks, xr,), 02(0aCK s /o) (ry x7))) € [l /0] (71 X T2)| = 71 X Tal 51 05y

To show this we assume that (v1,v2) € [|[7//a](m1 % 7'2)‘]]77/:6/1(_)(%, and show

(01([|7'/a]backs, x,) v1, 82(baCK(ja](ry xrs)) V2) € [Tt X Tllrsy oy
By the definition of back, this is the same as showing
G1([[7'|/a] Az : |11 X Ta|.(back,, (m12), backy, (max)) v1),
8oz« |[7'/a](71 X 72)|-(PaCK s jair, (T12), DACK s)y (M2)) v2)) € [Tt X Tolls1 5y
By Lemma 7.5, this is equivalent to showing
O1({([I7']/a]pack:) (m1v1), ([|7']/albacks,) (201))),
52(<back[7//a]n (7[‘1’[)2), baCk[T//Oé]TQ (7[‘2’[)2)>)) € [[7'1 X T2]]5’:6i<—>6§

Then using Lemma 8.3 for pairs we just need to show that
(31(([I7'l/albacks) (m101)), B2(backfss jafr, (T102))) € [Milri51 015,
(01(([I7']/aloacks,) (mav1)), ba(backis jajr, (T2v2))) € [r2l 5105,

However by induction we get that
(01([|7'|/a]backs,), d2(back(/o),) € [/e]mi] = T1],y.51 00

(31([|7'|/aloacks,), d2(backiy /alr,)) € [I[r'/almal = Tal,ys s,

We also know by our assumption and the definition of the type relation that (mv1,mve) €
ks /a]ﬁ]]]f],:(;,l &g, and .(7721)1,7121)2) e M~ /a]7'2|]]g,:6£ o4, from which the desired result follows
by Lemma 8.3 for functions.

75

Case forr =1 > m
In this case we want to show that

(01([I7'l/aJoackn —sr,), 2 (backiy ja)(r r)) € [T (T = T2)| = 71 = ol 5105,

We assume that

(f1, f2) € Il Jal(m = m2)ly.gy o, = BB.(17/adm| x B = |[7'/el72]) X Bly.s v,

So by definition we just need to show that
(O1([|7']/albacks —r,) f1,02(baCkir jalr, sirjalr) f2) € [T1 = T2l51 s,
By the definition of back this is the same as showing

17" /a)(Af : |m1 = T2 Ay : 1. unpack[B, g] = f inbacky, ((m19) (overyy, m29)))) f1),
0a((Af : [falm = [falms| Ay « [7'/a]7:. unpack[8, g] = f in
back(,s/ar, ((T19) " (0ver|y /ojr ¥, 729))) f2)) € [11 — TQ]],,E]/:(%(_)(;%

Then by Lemma 7.5, this is equivalent to showing

(61((\y : [|7']/a]m1. unpack[B, g] = f1 in([|7'|/albacky,)((m1g) (([|7'| /a]overs,)y, m2g)))),
d2(Ay : [7'/a]ri. unpack[f, g] = f2 inback(/a)r, ((T19) (0very /a)r ¥, m29))))
€ln— 72]]77/;5'1H5g
To show this we assume that (v, v2) € [11],. 51 5, and show that
(01(\y : [|7']/a]m1. unpack[B, g] = f1 in([|7'| /a]backs,)((m1g) (([|7'|/alover,,)y, mag))) v1,
So(\y : [7'/a]T1. unpack(B, g] = f2 inback/a)r, ((T19) (OVeTr|r /a)r ¥s T29))) V2)
€ [[7-2]]5’:5{<—>65

Then by Lemma 7.5, this is equivalent to showing

~

(01 (unpack[B, g] = f1 in([|7'|/albacks,) ((w19)~(([|7'|/alover,, Jv1, mag))),
8> (unpack(B, g] = f2 inbackiy /), (T19) (OVer 1 ja1r V2, T20))))
€ [rely.5,00,

Since fi is a value, we know by rule Vpack that it is of the form pack[r], ¢1] as|[7//a](T1 — T2)|
for appropriate type 71 and value g;. Similarly we can write fo as pack[rs, g2] as|[7//a](T1 — T2)].
Thus we can show that

(01 (unpack[B, g] = pack|r{, g1] as |[7'/a](r1 —)| in
([I7']/ albacks,) ((m1g) (7| /aJovers, Jv1, m2g))),
02(unpack|, g] = pack(r;, 2] as |[7'/a](T1 —)| inback|ys /o), ((T19)(OVer [ja)r V2, T29))))
S) e
Thus by Lemma 7.5, we can just show that
(G1(([I7']/aJbacky,) ((1191) (|| /aJovers, Ju1, mag1))),

zs\2(bac-"k[T’/oz]’rg((71-192)/\<Over[’r’/oe]ﬁv?a77—2.92)))) € [[7-2]]5:61952

76

However since we know by induction that

(G1([]7'|/fbacky,), 62 (back(ja)r,) € [|[7'/alra| = 72,51 05,

So by Lemma 8.3 we just have to show that

~

81((m191) (7] /aJovers, Jv1, m2g1)), da((m192) ~(0VeT(rs jaim v2, T2g2))) € [[o) ma Ly 5

Now by our assumption that (fi, fo) € [|[7'/a](r1 —)|y
relation R’ C Val(ry) x Val(r) such that

45> We know that there exists a
2

(91,92) € [([7/alma| x B = [[7'/al7a]) X Blyr.sp oy
Where §f =01 @0 < 71, 8§ =0, @3 — 74, and n” =’ ® 8 — R’. This tells us that by definition,
(m191,mg2) € [I[7'/a)mi| x B = |[7') mal o5y sy

(7291, T292) € [[/3]]5":5'1'955’

We also know by induction that
(01([I7'|/alovers,). ba(over /o)) € [= [[7' /ol mi[Ly5 00,
Which by definition tells us that
(01([|7'|/afovers,) v1,0a(oveT(apr,) v2) € [IF/a)n I5r.g 00
Which then by Lemma 8.3 for pairs we know that
(G1({[I7'|/alovers,) vi, mag1), da({oVer(r /ajr,) va, magr)) € [l [alm] X Bli.sessy
Then again by Lemma 8.3 for functions we know that
01((m1g1)~(([I7']/a)overs, Ju1, mag1)), 02((m192) “(over(r i va, 202))) € [I[7'/a)7al I35 oy
Which no longer depends on 3, so it is what we wanted to show.
Now we need to show the corresponding case for over, that is
(01([[7'|/fovers, ir,), 82(0VeT o) m))) € [(11 = 72) = |[F'/a)(r1 = 72)|Ly51 s,

We assume that
(f1, f2) € [= a5 00

So by definition we just need to show that
(O1([[7']/overs r,) f1,02(0VeT s jafry sirjafm) f2) € [T /al(mi —= 72) |15 o
By the definition of over this is the same as showing

O (([7'|/a)(Af : 71 — T2 pack[r — T2, (Ay : |71 X (11 = 72).
overr, ((my) (backs (m1y))), f)las|m — m2[)) fi),

gg((x\f 7' Jalm — [T /a]ma. pack[r — 7o, (Xy [/ol x (11—).
OVer| /alr, ((m2y) (backp/ajr (m1y))), f)l as|[7'/alm — [7'/a]m|) f2))

e [Ilr'/adm — [/l 2 ly5 o

7

Then by Lemma 7.5, this is equivalent to showing

(81 (pack[[|7|/a](T1 = 72), My : |71| % (11 = 7).
overr, ((my) (backy, (m1y))), f1)]as|[r'/alr — [7'/a]7a]),
Sa(pack[ri — 7o, Ay« |[7'/a]71| X (11 = 7).
over (. /ajr, ((m2y) (backi/ajr (M1Y))), f2)] as [T /a]m — [1'/a]m]))
€ [3B.(I[7"/admi| x B = |[7'/alma]) x Bl,y.51458,

To show this, we pick R’ = [[1; — 73] and use the definition of the type relation to show that

GL([7'/ad Xy « 1| x (11 = T2).0verq, ((may) (backy, (m1y))), f1)),
Sa((y : [Jalri] x (71— T2).0VeT s jatr, (T2y) (backp jalr, (T19))), f2))
€ [/el x B = [[7'/al72l) X Blyrisressy

Where 6] =01 @8 = 11 — 72,08 =8, @8 < 1 — 12, and 0 =1 ® § — R’. We already know
that (f1, f2) € [[ﬁ]]’fi"ifsfH%I = R’ = [r; — 2] by assumption, so by definition we just need to show
that

GL([7']/ad Ay « 71| x (11 = T).0vers, ((may) (back., (m1y))))),
Sy = |[7'/almi] X (11 = T2).0Ver 1 a1 (M2y) (backp jajm (T19)))))

€ [llr'/alm| x B = [/alrall gy sy

To do this we assume that (v1,v2) € [|[7//a]m1]| % B]]n”:5’1’<—>6§/ and show that

@Ay : |7 /a]m| x (11 = 7).(([7'|/a]overs,) ((may) (([|7'|/afback.,)(m1y))))) v1,
d2(Ay = [[7'/alTi] x (11— T2).0veT (0}, (T2y) (Pack(ys /o)y, (T1Y)))) v2)
e [I17 /admalr gy sy
So by Lemma 7.5, this is equivalent to showing
(G1(([I7']/aJovers,)(mav1) (([I7'|/afbacks,) (miv1)))),
02(0ver | ja)r, ((m2v2) (backiy/ajr, (1102))))) € [T/ a]r2 I 5006
However by induction we know that
(G1([|7'|/alovers,), ba(over(ja)r,) € [1a — [/l mall,y 51 s,

So by Lemma 8.3 we just need to show that

~

(61 ((mav1) (([|7']/alback:,)(m1v1))), 02((wavs) (backy/ujr, (T102))))
€ [ralyrsy e

By assumption we know that (movy, movs) € [[ﬁ]]n/ﬁi o, = [— 7'2]]77//: 511>l » SO again by
Lemma 8.3 this is the same as showing that

(G1(([I7'|/a]pack:,) (m101)), d2(back],s /o), (m102))) € [T .50 050

We also know by induction that

(G1([]7'|/afoacky,), 62 (over(j)r,) € [[7'/almi| = 71,51 05,

78

So by Lemma 8.3 all we have to do to show the above is show that

~

(51(m1v1), 0a(m109)) € [[|[T//04]71|]]7E7~;5';<+5g

However this follows from our assumption that (vi,v2) € [|[7'/a]m1| x B, 51/»oy> and so the result
follows.

Case for 7 = V3.7
In this case we want to show that

(61([|7'|/] overys), da(overy juws) € [VA.T" — |[7'/a) (YB.17) 51005,

Then we assume that (v1,v2) € [VB.7"],. 51 >35> and so by definition we just need to show

B1([17'|/aloverys.on) vr, 82(0veTys, o jairm) v2) € [VB.(falr)15 e

By the definition of over, this is equivalent to

@1([|7']/a](Az = (VB.7").AB.over m(2[8])) v1),
Sa((Aa : (VB.7").AB.over (s (x[8])) v2)) € VA7 /ol) Iv.s1 s,

Then by Lemma 7.5, this is equivalent to showing

(61(AB([I7'|/a]over) (vi[B])),
3a(AB.over sy (va[B])) € [VB.|[7 /7" |],y.51 o3

Then by definition, we just need to show that for all 71 type, 7 type, and R’ C Val(ry) x Val(r)
s.t. R’ = R’ST,

(01 (AB-([|7'|/a]over) (v [8])) 7],
0a(AB.over(rs oy (valB)[r2]) € NI /el (.50 a0

Where 6 =8 @8 < 1, 05 =0, 5 < 1, and 0" = ® B — R’. So by Lemma 7.5, this is
equivalent to showing

~

(@1 (([I7'l/a)over,n)(vi[n])), d2(0ver |y) (va[r2)))) € [I[7' /7" L5 s
However, we get by induction that
(5’1([|T’|/a]over7u),6§(over[71/a]T//)) el — |[T//a]7”|]]n”:5’1’<—>5§’
And by our assumption and the definition of the type relation we know that
(v1[m1], valma)) € [7" o5y vy

So with the above, the desired result follows by Lemma 8.3 for functions.

Now we want to show the same for back, which is that
(51([|T,|/a]ba0kv,3.f"),gz(baCk[r'/a](v,B.r"))) € [llr'/a](VB.7")| = VBT], 51 05
Then we assume that (vq,v2) € [|[7//q] (VB'TH)H]n’:é’lHJQ’ and so by definition we just need to show
(61([I7'l/aJbackyg.rn) vi, 2(backyg (7 jafrr)) v2) € VBT T 51 030,

79

By the definition of back, this is equivalent to

G1([|7'] /) Az = (VB.7").AB.back.w(x[8])) v1),
82((Az : (VB.7").ABback) o) (2[6])) v2)) € V87" 1551 5,

Then by Lemma 7.5, this is equivalent to showing
(1 (AB.((I7| /alback,) (v1[81)), Ba(ABbackiy ot (v2[B])) € VBT, o,

Then by definition, we just need to show that for all 7 type, 72 type, and R’ C Val(ry) x Val(rs)
s.t. R’ = R’ST,

(01(AB-([I7']/eJback) (v1[8])[71]), 52 (AB.back jap (va[B)[r2]) € [T Tsm sy

Where 0] =8 @8 — 1, 0] =8, ®8 — 1, and n” =1 @ B — R’. So by Lemma 7.5, this is
equivalent to showing

(51 (([|T/|/Oé]back7_//)(7)1 [T]_])), (52 (baCk[T//a]Tu (UQ [TQD)) S [[7']] 1. 51195//
However, we get by induction that
(01([I7'/elback.), & (backp /o)) € [T /7" = 7150 60
And by our assumption and the definition of the type relation we know that
(o), valra]) € [/)" T gy sy

So with the above, the desired result follows by Lemma 8.3 for functions.

Case for 7 = 36.7"
In this case we want to show that

(61([|7'|/overas), 82(overy: jnyasm)) € [38.7" — 7' /a](3B.7")L,y.51. 055,

Then we assume that (v1,v2) € [38.7"],. 51 >, and so by definition we just need to show

(01([|7'] /a]overag .n) v1, 02(0verag iy jajrny) v2) € [136-([7" /a)T") By 5,

By the definition of over, this is equivalent to

(8\1(“7'"/0[]()\.% : (38.7"). unpack|B, y] = = in(pack|§, over,(y)] as |3B.7"])) v1),

8\2(()\$: (3B.[7" /a]|r"). unpack[B3, y] = = in(pack|s, OVeT [/q)r (y)] as [3B.[7"/a]T"|)) v2))

€ [BB-([7" /alm") .51 56

Then by Lemma 7.5, this is equivalent to showing
B,y] = v1 in(pack(B, ([|7'|/alover,~)(y)] as [35.[7 /a]7"])),
B,y] = vz in(pack[B, over|, o), (y)] as |IB.[7"/a]r"])))
& 13617 /2B sy,

Since (v1,v2) € [[EIB.T”]]W,:(% &g, Dy assumption, we know by definition that there exist 7, type,

(A 01 (unpack]|
5 |

02 (unpack

Ty type, €1 val, eg val s.t. v1 = pack[ri, e1]as 35.[|7|/a]r” and ve = pack[re, e2] as IB.[7' /o], as

80

well as a relation R’ such that (e1, e2) € [7"] .50 .5y, Where 6] =8 ® B = 71, 65 = 5 ® B = 7,
and n” =7’ ® 8 < R’. Thus we have that equivalently,

(51 (unpack(s3,y] = pack|r, e1] as 3B.[|7'|/a]7” in(pack[B, ([|7'|/a]over,~)(y)] as |3B.[7' /a|T"])),
:5\2 (unpack(B3,y] = pack|m, e2] as 3B.[7’/a]7” in(pack|B, over[T//a]Tu(y)] as [38.[7"/a]™"])))
S ELX)

Then by Lemma 7.5, this is equivalent to showing

~

(61 (packlr, ([r1/B][I7'|/a]over,v)(e1)] as [3B.[r /o] "),
02(pack(ry, ([12/Blover (s o,m)(e2)] as [3B.[7' /o] "))
€ [138.(17" /)" Loy o,

We can then use the types and values from v; and vy as the ones that exist to make this hold by
using Lemma 8.3 for existentials, and use the relation R’ so we just have to show that

(G1(([r1/BI[I7'|/aJoversn)(er)), da(([r2/ Blover(rs japr)(e2))) € LI /)7 I s

However by induction we get that
(G1([1/B)[I7' /eJoversn), ds([7a/ Blover(w japrn)) € [= |7 /alr” [Lym.sessy

And we already know by our assumption as shown earlier that (e1,e2) € [7"], . 5175y » SO combining
this with what we get by induction, the desired result follows.

Now we want to show the same for back, which is that
(31([|7']/afbackag), ds(backi jj@s.rn)) € (|17 /](GB7") = 3B.7"]51 5,

Then we assume that (vq,v2) € [H[T//Oé](36.7‘”)”]”/:5/1<_>6é, and so by definition we just need to show

(3\1([|T'\/a]back35_7.u) U1, 8\2 (backaﬂ.([ﬂ/a]ﬂ/)) ’Ug) S [[Hﬂ'TllﬂyE]’:diH(Sé
By the definition of back, this is equivalent to
((/5\1([’7'/|/Oé]()\$: |[38.7"|. unpack|3, y] = z in(pack|B, back,~(y)] as I3.7")) v1),

gg(()\a; :|38.[7"/a]7”|. unpack|B, y] = = in(pack|B, back[T//a]T//(y)] as 38.[7'/alT")) v2))
€ [[35-7'/,]]£/:53<—>5§

Then by Lemma 7.5, this is equivalent to showing

(gl([|7/|/@] unpack|f, y] = vy in(pack[3, back,~(y)] as I5.7")),
82 (unpack[B, y] = vz in(pack|B, backj,s /o), (y)] as IB.[7' /a]7")))
€ [387"Ty.5 00

Since (v1,v2) € [|3B8.[7 /ah”mn’ﬁi <, by assumption, we know by definition that there exist
71 type, T2 type, €1 val, ep val s.t. v; = pack[ry, e1]as|36.[7"/a]r”| and

81

vy = pack|7y, eo] as [3B.[7"/a]7”|, as well as a relation R’ such that (eq,es2) € [H[7'//04]7'”|]]n//:5/1/<_>5§/,
where 6] =01 ®@ 8 — 11, 8§ =0, ® 8 — 7o, and " =7’ ® f — R’. Thus we have that equivalently,
(31([|T’|/a] unpack[3,y] = pack|[r, e1] as |3B.[7"/a]7"| in(pack[B, back,~(y)] as I3.7")),
gQ(unpack[B, y|] = pack|m, es] as |36.[7"/a]7”| in(pack|B, backi, /q]7 (y)] as3B.[7"/a]™")))
€ [138.7"Ny.5105,

Then by Lemma 7.5, this is equivalent to showing

~

(01 (pack(ry, ([r1/B]l|7'|/alback,)(e1)] as 3B.[|7'| /a] "),

~

d2(pack(rs, ([r2/Blback(/a)-)(e2)] as 3B.[7"/a]7"))
€ B8 Ty.51008

We can then use the types and values from vy and vs as the ones that exist to make this hold by
using Lemma 8.3 for existentials, and use the relation R’ so we just have to show that

(@u(([m/B]lI7' /albackyn)(e1), d2(([72/ Blbackiy jajr)(e2))) € [T T gy sy

However by induction we get that
(01([r1/B]lI7'| /aJpack.), d2([r2/ Blback)s o)) € LllT'/alr”| = "1 m5ness

And we already know by our assumption as shown earlier that (e1,e2) € [|[7'/a]7"[],.50 67> 50
combining this with what we get by induction, the desired result follows.

O]

82

11.5 Translation Equivalence

Theorem 11.5. If A;T' Fge: 7~ €, then A;T F e = back,([overr/T']é) : 7, where [overp/T'| =
[over,, (z1)/x1]...[over,, (x,)/xy] for ' = @1 : 71, ..., Ty © Tip.

Proof. By induction over the translation rules.

Case for Runit
The rule for this case is

AT Fg O unit — () [tunit
In this case we know that A;I" ¢ () : unit ~» (). We want to show that A;T" + () =
backynit([overr/I']()) : unit. However, this follows immediately from the fact that A;T"
backynit ([overr/T]()) = () : unit.

Case for Rvar

The rule for this case is
z)=r71

ATkFgz 7~ 2

Rvar

In this case we know that A;T' Fg 2 : 7 ~» 2. We want to show that A;T' F x = back, ([overp/Tz) :
7. However, we know that A;T' - back,([overp/I'|x) = back,(over,(z)) and by Lemma 11.1 we
have that A;T" I back,(over,(x)) = x : 7. The desired result follows from transitivity.

Case for Rint
The rule for this case is

A;T'tgn:int ~n Hint

In this case we know that A;I" g n: int ~» n. We want to show that
A;T F n = backint ([overr/I'jn) : int

However, this follows immediately from the fact that A;T" - backint([overr/I'|n) = n : int.

Case for Rintop
The rule for this case is

A;T'kFger:int~ e A;I'Fges:int ~ &

int
A;T'Fgerpes:int ~ €1 péy Rintop

In this case we know that A;T g e;peg : int ~» €] pe),. We want to show that
A;T I e1pes = backiy ([overr/T](e] peh)) : int
By induction we get that
A;T F e & backin ([overr/T]e)) : int

AT eg 2 backiy ([overr/T]e)) : int

83

So by the definition of backiyt, we get the following:

A;T ey peg = (backing ([overr/Te))) p(backing ([overr/Teh))
((Az : int.z) ([overr/T)e})) p((Az : int.z) ([overr/T]e)))
([overr/T)é,) p([overr/Tle})
foverr/T](¢} pe})
(A\z : int.z) ([overr/T](e)peh))
backint ([overr/T](e] peb))

:int

11 1R

1

Case for Rifz
The rule for this case is

A;TFger:int~é A Thgey:7~weéy AjTbges:T~e3
A;T Fg ifz(ey,eg,e3) : 7~ ifz(é1, €2, €3)

Rifz

In this case we know that A;T" Fg ifz(ey, e, e3) : 7~ ifz(e], €}, e5). We want to show that
AT+ ifz(e),), e5) = backin ([overr /T]ifz(e], e), €5)) : 7
By induction we get that
A;T | e1 22 backiy ([overr/T]e}) : int
A;T | es 22 back, ([overr/T]e)) : 7
A;T + e3 = back, ([overp/Tes) : 7
Thus we get the following:

AT F ifz(eq, e9, e3) = ifz(backipn, ([overr/T)e)), back, ([overr/T')eh), back, ([overr/Te}))
ifz((A\z : int.z) ([overr/T]e}), back,([overr/T|ey), back, ([overr/T']e}))
ifz([overr/Ie}, back, ([overr/I]e,), back, ([overr/T]es))

= back, (ifz([overr/T]e}, [overr /Te,, [overr/Te}))

& back, ([overr/T']ifz(e], €}, €5))

1

1

iT
Case for Rpair

The rule for this case is

A;Tkger:mm~eép A'Fges:m~é)
Rpair

A;T g (e1,e2) : 11 X 19~ (€1, €32)
In this case we know that A;T g (e1,e2) : 71 X 72 ~ (€], €}). We want to show that
AT {eg, e2) = backy, xr, ([overr/T){e], eh)) : 1 X T2

By induction we get that
A;T | e1 2 back,, ([overr/Te}) : 1

AT eg 2 back,, ([overr/T]e)) :

84

So by the definition of back;, x-,, we get the following:

AT F (e1, e2) & (back,, ([overr/I')e}), back,, ([overr/T]e,))
~ back,, xr, ([overr/Te], [overr/Tes)
> back, xr, ([overr/T]{e], e5))

1 T1 X T

Case for Rproj

The rule for this case is
A;Thge:mp xmp~e i€{l,2}

AT g me: 1~ me

Rproj
In this case we know that A;T' g me: 7; ~ m;e/. We want to show that
A;T + mie = backy, ([overy /T]me’) : 7
By induction we get that
AT F e & back,, xn([overr/T)e') : 71 x 7o
Thus we get the following:

AT - mie = i (backy, xr ([overr/T]e’))
~ back,, (m;([overr/T]e))
>~ back,, ([overr/T]m;e’)

LTy

Case for Rtlam
The rule for this case is

Aa;TFge:T~~¢€
A;T'Fg Aace : Va.T ~» Aa.e Rilam

In this case we know that A;I" Fg Aa.e : Va.7 ~ Aa.e. We want to show that
A;T F Aa.e = backy,, - ([overr /T (Aa.€)) : Va.r

By induction we get that A, o;T' F e = back,([overp/T]é) : 7, and so by congruence we have that
A;T F Aa.e = Aa.back,(Joverr/I'|e) : Va.7. We know that

A; T+ backyy. - ([overp /T (Aa.€)) = backy,. - (Aa.([overr/T]e))
= (A\z : Va.7.Aa.(back, (z[a]))) (Aa.(Joverr/I']e))
= Aa.(back,((Aa.(Joverr/Te))[a]))
>~ Aa.(back,([overr/I]e))
= Aace

Vo1

Case for Rtapp
The rule for this case is
A;Thkge:Var~e Abg7 type
A;T g e[r] : [T /a]T ~ e[|7]]

Rtapp

85

In this case we know that A;T Fg e[r’] : [7//a]T ~ €[|7']]. We want to show that
A;T & e[7'] 2 back|y o), ([overr /Tle[|7]]) : [7'/a]T

By induction we get that A;T" F e = backy,.,([overr/T'|é€) : Ya.7, so by congruence we get that
AT F e[r'] 2 backyy.([overr/Te)[r'] : [7//a]r. We know that

A;T | el7] 2 backyq. ([overr/T)e)[r]
=~ (\r : Va.7.Aa.(back, (z[a])) [overr/Te)[r']
=~ Aa.(back,([overr/T'e[a])) [7]
=~ ([7'/alback,) ([overr/T]e[r'])

[JalT

By Reflexivity, we know that A;T' F [overp/T]é ~ [overr/T|é : [Va.7|. This means that for d; : A,
d2 1 A, 161 <> dg, and 1 ~p Y2[n : §1 <> 2], we know that

(31(81([overr/T1e)), 72(0a([overr /T1E))) € [Var|[5s, oo,

Thus we can use the definition of the logical relation and the extension to terms to get that, using
the relation R as described in Lemma 11.3,

(31 (51 ([overr/T]e))[01(7")], 32(0a([overr /T1e)) Ba(|7')]) € [I7I15-51 s,

Where & = 8, ® o < 01(7'), 0y = 62 ® o < da(|7|), and ¥ = n ® & < R. By Lemma 11.3 we
know that R N
(61([r"/aJbacky), d2(back(/a)-) € [I7] = [r'/al7] 5 5,

This implies by definition and Lemma 8.3 that

(61([7'/aJback,) (71 (81([overr/T]))[81(r")]),
0a(back(o)) (F2(0a([overr/T1e)[ba(|7'N))) € [[7'/alr]5r g o

This no longer depends on «, so this is the same as
(1 (31 ([/afvacks) ([overr/Telr']))), Fa(Ga(backis oy (foverr/Tlel|r')))) € 17" /al7]5s, s,
Then by the definition of logical equivalence, we have that
AT+ ([7'/aback:) ([overr/T]e[r']) ~ back(q), ([overr /Tle[|7']]) : [7'/a]T
So by the coincidence of logical and contextual equivalence, we get
AT F ([7'/a)back,) (Joverr /Te[r']) = back[T//a]T([overp/F]éHT'H) 7 ol
But combining this with our derivation above, this gets us the desired result.

Case for Rpack
The rule for this case is

AFg7'type A,abgttype A;Tbge:[r'/alr~e

Rpack
A;T g pack[r/, €] as Ja.7 : Ja.T ~~ pack[|7’|, €] as Ja.|7| pac

86

In this case we know that A;T' g pack[r’, e] as Ja.7 : Ja.7 ~» pack[|7’|, €] as Ja.|7|. We want to
show that

A;T + pack|[r’, ¢] as Ja.T = backs,, - ([overr/T|(pack||7’|, €] as Ja.|7|)) : Fa.T

By induction we get that A;T" = e = backys/q)-([overp/T]e) : [7'/a]r, and so by congruence we
get that

A;T - pack[r’, e] as Jo.7 = pack([r’, back|, /o), ([overr/I|e)] as Ja.7 : [7'/a]r
Thus we have that

A;T + backs,, - ([overr /T (pack[|7’|, €] as Ja.|7|))

~

= (A\z : |Ja.7|. unpack[a, y] = x in(pack|a, back,y| as Ja.T))
([overr/T](pack[|7’|, €] as Ja.|T|))
=~ unpack|a, y| = (pack[|7’'|, [overr/T]e] as Ja.|7]) in(pack|a, back,y] as Ja.T))
= pack[|7’|, ([|7’|/a]back,) ([overr/T]é)] as Ja.7
:JdoT
Now we just need to show that
A; T Fpack[|7], ([|7'|/a]back,) ([overr/T']e)] as Ja.T
= pack[r’, backy, /o). ([overr/T]e)] as Jov.7

Ho.T

The desired result will follow from this by our induction result above, as well as transitivity. By
the coincidence of contextual and logical equivalence, this is the same as showing that

A;T Fpack(|7|, ([|7'| /a|back,) ([overr/T]e)] as Ja.T
~ pack[7’, backy, /- ([overr/T]é)] as Ja.7

Ho.m

So we just have to show for §; : A, d3 : A, 17 : 61 <> d2, and y1 ~p ¥2[n : 61 <> o] that
(31 (71 (pack]|”’|, ([|7']/a]back;) ([overr/T]e)] as Ja.T)),
62(F2(pack|r, back(,s/q)-([overr/T']e)] as Ja.7)))
€ [[Ela'T]]n:51<—>62

By the definition of the type relation, to show this we can just show for some ST-closed relation
R C Val(di(|7’])) x Val(da(7')) that

(1A (([17']/a]back) ([overr/T]e))), b2(F2(backi /) ([overr/T1e))) € [7], .55,

Where §] = 61 @ a < Su(r), =0 ®@a 52(]7']), and ¥ = n® a = R. Now we pick R to be
the relation defined in Lemma 11.4, so by the lemma we know that

(G1([]7'|/alback,), 6s(back(j)-) € [|[7'/al 7] = Tl sy

We also know by Reflexivity that

(011 ([overr/Te)), d2(F2([overr/Te))) € [I[7'/a]r[],y.51 50,

The above two facts combine to get us the desired result, by definition of the type relation.

87

Case for Runpack
The rule for this case is

ATkger:3am~é AoT,x:mbges:mm~é Abgmtype

Runpack
A;T Fg unpack|a, x] = €1 ineg : 75 ~ unpack|a, x] = €] inéy P

In this case we know that A;T" g unpack|a,z] = ej iney : T ~» unpack|a, z] = €] inéy. We want
to show that

A;T g unpack|a, x] = e; ines = back,([overr/I'|(unpack[a, 2] = é1inéy)) : 7
By induction we get that
A;T F e; = backg, /([overp/Teér) : Jaur

A,o;T 20 7'+ eg 2 back, ([overr 4. /T, z]€3) : T

Thus we have that

A;T F unpack[a, 2] = e1 iney
= unpack|q,] = backs, ([overr/I'|é1) inback,([overr .. /T, x]é3)
= back, ([overr/I'|(unpack|a, x| = backs, ./ (€1) in[over,(x)/z]é2))

:T
Thus the result will follow by transitivity and congruence if we just show that

>~

A; |T'| F unpack|a, 2] = backa, ./ (€1) in[over,/(z)/x]éa = unpack(a, 2| = €1 inéy : |7|

If €1 does not terminate, then clearly the above holds, as neither side will terminate, so they are
contextually equivalent. So suppose €1 |, so we have that é; —* pack[ri,v1]as Ja.7/. Then we
have that

A; ‘F’ F backgom./(e_l)
>~ (\x : |[Ja.7’|. unpack|w, y] = = in(pack|a, back, (y)] as Ja.7)) €
unpack|a, y| = ¢1 in(pack[w, back,(y)] as Ja.7’)

unpack|a, y| = pack|r,v1] as Ja.7’ in(pack|a, back./(y)] as Ja.7’)

12

12

pack[7y, back, (v1)] as Ja.7’

d7
So then using this and Lemma 11.1 below we have that

A; |T'| F unpack|a, x] = backs, ,/(€1) in[over/(z)/x]éa

> unpack|a, ¥] = pack|ry, back./(v1)] as Ja.7’ in[over, (z)/z]éz

12

[back,(v1)/z|[T1/al[over,(z)/x]és
[71/a][over, (back.(vy))/x]é3
[71/a][v1/z]é

unpack|a, x] = pack[ry,v1]as Ja.7’ iné

I

12

= unpack|a, x] = €1 inéa
Il

Thus the desired result follows.

88

Case for Rfun
Given the following abbreviations:

E = (z1,(..\xp-1,2n)...))

S = [my/z][mmoy/2]...[mimo.. w2y [1][m2.. T2y /0]
F = pack|Tens, (f, moy)] as |t — 7’|

The rule for this case is

IF'=x1:7,..,Zn : Ta A g Ttype
AT x:r, f:7—=7TFge:T € Tepy = 71| X oo X |70

R
A;T kg fun f(z:7).e: 7 — 7 ~ pack[reny, fun

(Fun f(y : 7] X Tens)-[F/ f1S(€)), E)] as |7 — 7

In this case we have that
AT hgfun f(z:7).e:7 — 7'~ pack|Teny, (Fun f(y : |7] X Teny).[F/f]S(€), E) as|r — 7'
We want to show that
A;THfun f(z:7)e:7— 7
= back, ,([overr/T'] pack[reny, (Fun f(y : |7| X Tens).[F/ f]S(), E)] as |7 — 7'|)
T =T

By induction we get that A;T,z : 7, f : 7 — 7' F e = backy([overr g:.r f.rr /T, @, fl€) = /. We
will prove the above by making use of Admissibility, Theorem 7.8, so we just have to show that for
all i > 0,

A;THfund f(z:7)e:m— 7
= back,_,,([overr /'] pack[7eny, <51le fly:|7| X Tem).[F/f1S(€), E) as |7 — 7'])
=T

We will do this by induction on 4.
Base Case: i =0
In this case we just need to show that
AT F fun® f(z:7).e
—0
> back, . ([overr/T] pack|[reny, (fun f(y : |7| X Tenw)-[F/f]S(€), E)] as |7 — 7'|)

/
T =T

However we know the following:

89

A; T Fback, . ([overr/I'| pack|Teny, ((ﬁo fy:|7| X Tenw)-[F/f]1S(€)), E)] as |7 — 7'|)
~(\f: |t — 7'|.\z : T.unpack|a, g] = f inback, ((m1g) (over,z, mag)))
(loverr/T] pack[reny, (Fun” f(y : |7| X Tens).[F/ £15(6)), E)] as |7 — 7))

~)\z : 7.unpack|a, g] = ([overr/I'| pack|Teny, ((f/u\n0 fy 7| X Tenw)-[F'/ f]1S(€)),
E)]as|t — 7'|) inback,/((m19) " (over,z, mag))

~)\z : 7.unpack|a, g] = (pack|Teny, ((f/u\n0 fy 7| X Tenn).[F/ f]S(€)),
[overr/T|E)] as |7 — 7'|) inback, ((m1g) (over,z, mag))

)z : rbacky (w1 {(Fun. f(y : 7] X Teno)-[F/f]S(€)), [overr/T]E))
(over.z,m((Fun’ f(y: |7] X Tens).[F/ f15()), [overr/TIE)))

=)z : T.back, ((fun f 7| X Tenw)-[F'/ f1S(€)) (over,z, [overp /T|E))

S T.backT/((fun J@ 7] X Tenw)-[Pack[Tenw, (f, m2y)] as |7 — T/‘/f]S(é))A
(over,z, [overr/T'|E))

Thus we can just show that
AT+ fun® f(z:7).e
~ Az T.backT/((EElO Fly 7| X Tenn)-[PaCk[Tens, {f, m2y)] as |7 — 7’|/ f1S(€))”

(over,z,[overr /T E))
T =T

So we just have to show for §; : A, §3 : A, 1 : 01 <> do, and y1 ~p Y2[n : d1 > o] that

(fun0 flz:7).e,A\z: T.backT/((f/quo F(y 7| X Tenv)-[Pack[Ten, (f, m2y)] as
|7 — 7’|/ f]S(e)) " (over,z, [overr/T|E)))
€ [[T — 7_/]]77:51(—)52

To do this we assume that (vi,ve) € [7] and show that

77:51(—)62
—0
((fun® f(z:7).e) vy, (Az : T.backy ((Fun f(y : || X Teno)-[PACK[Tenw, (f, m2y)] as
|7 — 7’|/ f]S(€)) " (over,z, [overr/T|E))) vo)
E

€ [[T/]]'r]:(h(—)ﬁz
However by the properties of fun” , we know that neither of these terminate, so the above holds.
Inductive Case: i >0
In this case we just need to show that

A;T - fun’ f(z:7).e

= back;, . ([overr,/T| pack[Teny, (Fun' f(y : || X 7ens).[F/ f15(), B)] as |7 — 7]
T =7

90

Thus we have that

A; T Fback, . ([overr/I'| pack|Teny, <(f/u?11 fy:|7| X Tenw)-[F/f]1S(€)), E)] as |7 — 7'|)
S(\filr =T 2T unpacl'{[oz,g] = finback, ((m1g) (over,z,mag)))
([over /T pack(reny, (Fun' f(y : |7] X Teno). [F/f] (€), E)] as |t — 7'|)
~)\z : 7. unpack|a, g] = ([overr/I'| pack|Teny, <(fun fy 7| X Tenn).[F/ f]S(€)),

E)]as |t — 7'|) inback./((m19) " (over,z, mag))

(0,91 = (packlrens, (Fun' f(y: || x Tens).[F/ f1S(@)),
[overr/T|E)] as |t — 7'|) inback/((m1g) (over,z, mag))
~)\z @ T.back,/((m ((funi f(y 7| X Tenw)-[F/ f]S(€)), [overr /T E))™
(overTz,W2<(fun f(y 7| X Tenw)-[F'/ f1S(€)), [overr /T]E)))
~)\z : .back,y ((Fun’ f(y: |7| X Tenw).[F/f]S(€)) (over,z, [overp /T]E))
=)z : mbacky ((Fun' f(y : 7] X Tenn)-[Pack[rens, (f, ma) as |7 — 7|/ £]S(€))
(over,z, [overr /T'|E))
=)z : mbacky ([f(y 7] x Tens).[F/ f15(0)/ 1]
[pack|Teny, (f, 7r2<over.rz [overr/T|E))| as |t — 7’|/ f][{over;z, [overr/T|E) /y]S(€)
>\z : T.back, ([fun fy 7] X Tenw).[E/ f1S(€)/ f]
[pack|Teno, (f, [overp/F] Vas |t — 7’|/ f][{over,z, [overr/T|E) /y]S(€)
[fun
(
[p

=)z : 7. unpack|a,

~

>~)\z : T.back./(fun fy |7 X Tenw)-[F'/ f]1S(€)/ f]
[pack|Teny, (f, [overr/T|E)| as |t — 7’|/ f][overr ... /T, z]€)

~)\z : 7.back,([pack|Teny, (fun’ fun f(y 7| X Tenw)-[F'/ f]1S(€),
[overr/T|E)] as |t — 7’|/ f][overr ..; /T, z]€)

By our inner induction, we get that

AT fun'! f(z:7).e
> back,_,([overr /T pack[rene, (Fun' + f(y : 7| X Teno).[F/f1S(€), E) as |7 —)
T — 7',
However by Lemma 11.1, this is equivalent to
A;T F over, o (fun’™ ! f(z: 7).e)
> [overr/T] pack|reny, (Fun’ ' f(y : |7] X Tens).[F/£1S(€), E)]as |7 — 7|

= pack[Ten, (Fun f(y: 7] X Tens).[F/ f]S(2), [overr/T]E) as|r — 7'

/
T =T

91

We can then apply this to the above to get that

A;T F)Az @ 1.back, ([pack|Teny, <f/uT1i71 Fy o |7] X Tenw)-[F/ f]1S(€),
[overr/T|E)] as |t — 7’|/ f][overr ... /T, z]€)

~)\z : T.back, ([over, . (fun'! f(y: 7).e)/f][overr ... /T, z]é)

)z : mbacky ([fun'™t f(y: 7)./ f][over, . f/f][overr ... /T, z]€)

2)\z . [fun’! f(y: 7).e/ fback, ([overr ... frsr /T, 2, 1)

=Nz [fun’™t f(y:7).e/fle

>fun’ f(z:7).e

T =7

The second to last equivalence is due to our outer induction hypothesis. Therefore by transitivity
this case holds.

Thus we have shown for all 7 that
A;TF fun’ f(z:7).e
> back,,,(Joverr /T] pack[Tene, (Fun' f(y : |7| X Tens).[F/f]S(€), E) as |7 — 7'|)
T — 7'/
So by Admissibility we get the desired result for this case, that
A;T - fun f(z:7).e
= back,_,.([overr /T'] pack[reny, (Fun f(y : |7| X Tens).[F/f]S(€), E) as |7 — 7'|)
T — 7'/
Case for Rapp
The rule for this case is

ATkger:T—=717 ~eé1 ATkFgey:T7~ 6

— Ra
A;T g ey eg: 7/~ unpack|a, 2] = € in(mz) (€2, Tox) pp

In this case we have that A;T" Fg ey ey : 77 ~~ unpack|a,z] = € in(mz) (€2, o). We want to
show that

A;T F ey eg 2 back,([overr/I'|(unpack|a, 2] = é1 in(mix) (€, mox))) : 7/
By induction we get that

AT+ ey 2 back, . ([overp/T)é1) : 7 — 7'

A;T F eg = back,([overr/T'|éa) : 7

92

Thus we have the following;:

A;T F ep eg Z(back,_,,/([overr/I']é1)) (back,([overr/I'|éa))
((Af: |7 = 7'|.\y : 7.unpack|a, g] = fin
back, ((m1g) (over,y,mg))) ([overr/Te1))
(back,([overp/I'|éez))
>~(\y : T.unpack|a, g| = ([overp/I'|é1) in
back,/((m1g) (over,y, mag)))
(back,([overp/T]éz))

~unpack|a, g] = ([overp/T]é1) in

l12

back, ((m19) (over,(back,([overr/T'|é2)), m2g))
~unpack|a, g] = ([overr/T]é1) inback,((7m1g) ([overr/T|éa, mag))
~back, ([overr/T'](unpack|a, g] = €1 in(m1g9) (€2, m2g)))

/
T

O]

Corollary 11.6. If A;T' Fg e : 7 ~ ¢, then A;|I'| F e = over,([backr/I'le) : |7|. where
[backr/T'] = [back,, (z1)/x1]...[backs, (x,)/xy] for T'= 21 : 71, .00y Tyt T

Proof. By Theorem 11.5, we know that
A;T F e = back,([overr/Te) : 7
Then by congruence we get that
A;T F over,([backr/T']e) = over,([backr/I'|back,([overr/T']e)) : 7
However this is equivalent to
A;T F over,([backr/T'e) = over,(back,([backr o overr/I'|e)) : T
Then by Lemma 11.1 and Lemma 11.2, we get that

A;T F over,([backp/Ile) =e: T

93

12 Erasure

We define an erasure type translation 7° and term translation A;T" ¢ e : 7 ~»° € that translates
terms in the combined language into terms in the source language by simply “erasing” closed
functions and converting them to normal functions.

The type translation is defined as follows:

o’ =«
unit® = unit
int° = int
(11 X 12)° =70 X7y

[¢]

(1 => 1)’ =17 —7

)

(m=mn)=1m7 21

(Va.1)® = Va.(7°)
)

(Fa.7)® = Fa.(7°)

We also define I'® by -° = - and (I',x : 7)° =T°, 2 : 7°

The term translation is defined as follows:

0°=0
z° =z
n’ =n

(e1pes)® =ejpes
1fZ 61,62, 3)0 = ifz(ef,eg,eg)
(e1,e2)° = (€], €3)
(mie)® = m;i(e°)
(Aa.e)® = Aae®
(e[r])° = €°[7°]
T

o

(pack|[r’, e] as Ja.7)° = pack[r’®, e°] as Ja.7°

o

unpack|a, z] = e1 ines)® = unpack|a, x| = €] ine;
p p 1 2

)
)
)
)
(fun f(x :7).€)° =fun f(x:7°).€°
)
)
)

o (o]
(e1 €2)° = €] €5

(fun f(z:7).€)° = fun f(x:7°).e°

[¢] o o
(e17€2)” = €] €5

12.1 Static Erasure
Lemma 12.1. If A;T'Feo e: 7, then A;T° Fg e : 7°.

Proof. By induction on the structure of e.

94

Case for Tunit
If A;T Fe O :unit, then we know that ()° = (). But we also know that A;T° Fg () : unit® =
unit by rule T'unit, as desired.

Case for Tvar
If A;T o o : 7, then we know that z° = . But we also know that A;T° kg = : 7° by rule Twar,
since by definition, I'° will contain x : 7°, since I' contains x : 7.

Case for Tint
If A;T' F¢ n:int, then we know that n° = n. But we also know that A;I'° Fg n : int® = int by
rule Tint, as desired.

Case for Tintop

If A;T Fo erpes : int, then we know by assumption that A;T' k¢ eg : int and A;T k¢ eq @ int.
Then by induction we have that A;I'° g e] : int and A;I'° g €5 : int. Thus by rule Tntop and
the fact that (e;pe2)® = (e§pe3), we get that A;I' g (e1 pea)® : int, as desired.

Case for Tifz

If A;T Fo ifz(ep,ea,e3) : 7, then we know by assumption that A;T' ke eg @ int, AT Fooeg @ 7,
and A;T' F¢ e3 @ 7. Then by induction we have that A;I'° g e] : int, A;T° kg €5 : 7°, and
A;T° Fg e : 7°. Thus by rule T'ifz and the fact that ifz(ey, ez, e3)° = ifz(e], €3, €3), we get that
A;T Fg ifz(ep, e, e3)® : 7°, as desired.

Case for Tpair

If A;T k¢ (e1,ea) : 1 X 7o, then we know by assumption that A;T" Feoep : 7 and AT Feoeg @ 7o.
Then by induction we have that A;I'° kg e] : 77 and A;T° g €5 : 75. Thus by rule T'pair and the
fact that (e, e2)® = (€9, €3), we get that A;T g (e1,e2)° : (11 X 12)°, as desired.

Case for Tproj

If A;T F¢ me : 73, then we know by assumption that A;T' F¢ e : 7 X 70. Then by induction we
have that A;T° kg €° : (11 X 72)°. Thus by rule T'proj and the fact that (me)® = m;(e°), we get
that A;T' Fg (me)® : 77, as desired.

Case for T'tlam

If A;T o Aa.e : Va.1, then we know by assumption that A, ;1" F¢ e : 7. Then by induction we
have that A, ;T g €° : 7°. Thus by rule T'tlam and the fact that (Aa.e)® = Aa.(e°), we get that
A;T g (Aae)® : (Va.T)°, as desired.

Case for T'tapp

If A;T b e[r'] : [7'/a]r, then we know by assumption that A;T k¢ e : Va.7. Then by induction
we have that A;T° Fg e : (Va.7)°. Thus by rule Ttapp and the fact that (e[7'])° = (e°)[7"°], we
get that A;T Fg (e[7'])° : ([7//a]T)°, as desired.

Case for T'pack

If A;T ¢ pack[r’,e]asJa.7 : Ja.7, then we know by assumption that A;T ko e : [7//a]r.
Then by induction we have that A;T° kg e® : ([7//a]T)°. Thus by rule Tpack and the fact that
(pack[r’, €] as Ja.7)° = pack[7’°, e®] as Ja.7°, we get that A;T Fg (pack[r’, e] as Ja.7)° : (Fa.7)°,
as desired.

95

Case for Tunpack

If A;T F¢ unpack|a,] = ejines : 7, then we know by assumption that A;T ke e @ a7’ and
A,o;T,z: 7" k¢ eg : 7. Then by induction we have that A;T° Fe ef : a7 and A, o; T, 2 : 77° ¢
e§ : 7°. Thus by rule Tunpack and and the fact that (unpack|a,z] = e; ines)® = unpack|a, z] =
ef ines, we get that A;T' Fg (unpack[a, z] = e; ineg)® : 7°, as desired.

Case for T fun

If A;T be fun f(z : 7).e : 7 — 7/, then we know by assumption that A;T,z @ 7 o e @ 7.
Then by induction we have that A;T°,x : 7° kg €° : 7/°. Thus by rule T fun and the fact that
(fun f(z:7).€)° =fun f(z:7°).e°, we get that A;T' kg (fun f(z:7).€)°: (1 — 7)°, as desired.

Case for Tapp

If A;T k¢ eg eg : 7/, then we know by assumption that A;T' Fo eq : 7 — 7/ and A;T o eg @ 7.
Then by induction we have that A;T° Fg el : (7 — 7/)° and A;T° Fg e$: 7°. Thus by rule Tapp
and the fact that (e; e2)° =€ €3, we get that A;T' Fg (e1 e2)° : 77, as desired.

Case for Tccfun

If A;T ¢ fun f(z : 7).e: 7 = 7/, then we know by assumption that A;T,x : 7 F¢ e @ 7.
Then by induction we have that A;T°,x : 7° kg €° : 7/°. Thus by rule T fun and the fact that
(fun f(z :7).€)° = fun f(x : 7°).°, we get that A;T kg (Fun f(z : 7).€)° : (1 — 7')°, as desired.

Case for T'ccapp

If A;T ko eg"eg : 7/, then we know by assumption that A;T' Fo e : 7= 7 and AT o eo @ 7.
Then by induction we have that A;T° Fg e : (7 = 7/)° and A;T° Fg €5 : 7°. Thus by rule Tapp
and the fact that (e; e2)® = €3 €3, we get that A;T' Fg (e17e2)® : 77°, as desired.

Lemma 12.2. If eval, then e° val.
Proof. By induction on the structure of the step e — €.

Case for Vunit
Trivial, since O° = Q).

Case for Vint
Trivial, since n® = n.

Case for Vpair
Suppose (e1,e2) val, we want to show that (ej,e2)°val. By induction we get that efval and
e$ val, which implies by rule Vpair that (€9, e$) val, or equivalently that (e;, es)° val.

Case for Vfun
Suppose fun f(z: 7).eval, we want to show that (fun f(x : 7).e)°val. Since (fun f(x :7).e)° =
fun f(x:7°).€° and fun f(x :7°).e°val by rule V fun, we have that (fun f(z : 7).e)° val.

Case for Vcefun

Suppose fun f(z : 7).eval, we want to show that (fun f(z : 7).e)° val. Since (fun f(z : 7).e)° =
fun f(x:7°).€° and fun f(x :7°).e°val by rule V fun, we have that (fun f(z: 7).e)° val.

96

Case for Vtlam
Suppose Aa.eval, we want to show that (Aa.e)®val. Since (Aa.e)® = Aa.e®, by rule Vitlam we
know that Aa.e®val, or equivalently that (Aa.e)® val.

Case for Vpack

Suppose pack[7’, €] as Ja.7 val, we want to show that (pack[r’,e]asJa.7)°val. By induction we
get that e®val. Then by rule Vpack we get that pack[r’°,e°] as Ja.7° val, or equivalently that
(pack[r’, €] as Ja.7)° val.

12.2 Dynamic Erasure

Lemma 12.3. If e — ¢/, then e° — €/°.

Proof. By induction on the structure of the step e — €.
Case for Eintop,

Suppose that
e1 > €]

n Eintopy

€1pex — eppe2
Then by induction we get that e} — €/°, so by rule Eintop; we know that ej pe$ — €/° pe$, which
by definition is equivalent to (e; pea)® — (€} pe2)°.

Case for Eintops

Suppose that
e > €l

- Eintops

€1pex— e1pey
Then by induction we get that e$ — €5, so by rule Eintops we know that ej p e — e pey, which
by definition is equivalent to (e; pea)® — (e1peh)°.

Case for Eintops

Suppose that
nipng=n

W Elnt0p3

Since n = n; and n§ = ng by definition, it follows that (n;pn2)® = n = n°, so by rule Eintops
we have that (nqpng2)® — n°.

Case for Fifz

Suppose that
e1 €}

, - Eifzx
ifz(eq,eq, e3) — ifz(e), ea, €3)

Then by induction we get that e — €, so by rule Eifz; we know that ifz(ef,e$,es) —
ifz (e, e3, e3), which by definition is equivalent to ifz(eq, ez, e3)° — ifz(e), e2, €3)°,

97

Case for Eifzo

Suppose that
n=20
ifz(n,eq, e3) — €

E’ifZQ

Since n° = n = 0, we know by rule Eifzy that ifz(n°, €3, e3) — e§ or equivalently ifz(n, ez, €3)° —
€s.

Case for Eifzs

Suppose that
n#0

ifz(n,eq, e3) — e3

E’ifZ3

Since n° = n # 0, we know by rule Eifz3 that ifz(n°, €3, e3) — e§ or equivalently ifz(n, ez, e3)° —
es.

Case for Fapp,

Suppose that
e — €}
Eapp:

e1 ez € ey
Then by induction we get that e — €, so by rule Fappy we know that e e5 — € e, or
equivalently that (e e2)® — (€] e2)°.

Case for FEappo
Suppose that
eg > €

(fun f(z:7).e) e2 — (fun f(x:7).e) €,

Eapps

Then by induction we get that e5 — €5, so by rule Eapps we know that (fun f(z : 7).)° €5 —
(fun f(z:7).€)° €y, or equivalently that ((fun f(x : 7).e) €2)® +— ((fun f(z:7).e) €5)°.

Case for Fapps

Suppose that
esval

(fun f(x :7).€) eg— [fun f(x : 7).e/f]|[e2/x]e
We know that (fun f(x :7).e)° = (fun f(x : 7°).€°), as well as that e§val by Lemma 12.2. Then
by rule Fapps we get that (fun f(z : 7°).e°) e — [fun f(z : 7°).€°/ f]leS/x]e® which is equivalent
to ((fun f(z:7).€) e2)° — ([fun f(x : 7).e/f][e2/x]e)°.

Eapps

Case for Eccapp;

Suppose that
e1— e} P
—= ;=< L.cca
e1 eg — €] es PP1
Then by induction we get that e} — €, so by rule Fapp; we know that e e5 — €}° €5. Since
(e17€2)° = €5 €5 and (€] e2)® = € €3, this is equivalent to (e; ea)® — (€] e2)°.

Case for Eccappo

Suppose that
eg > €

— FEccapps

(fun f(z:7).e)"ey — (fun f(z : 7).e)"¢,

98

Then by induction we get that e§ — €5, so by rule Eapps we know that (f/El flz:7).€)° €5 —
(fun f(z:7).e)° €. Since ((fun f(z : 7).e)"e2)° = (fun f(z : 7).€)° €3 and

((fun f(z : 7).€)"e5)° = (fun f(z : 7).e)° €5, this is equivalent to ((fun f(x : 7).e)
((fun f(x:7).e)"€h)°.

~

62)0 —

Case for Eccapps

Suppose that
eo val

(fun f(z:7).€)eg — [fun f(z : 7).e/f][ea/z]e
We know that (fun f(z : 7).e)° = (fun f(z : 7°).€°), as well as that e§val by Lemma 12.2. Then

by rule Eapps we get that (fun f(z : 7°).€%) €§ — [fun f(x : 7°).€°/f]le3/x]e® which is equivalent
to ((fun f(z:7).e) €2)° — ([fun f(x: 7).e/f][e2/x]e)°.

FEccapps

Case for Epairq
Suppose that
e+ €}

<617 62> = <€/1, 62>

Epairy

Then by induction we get that e — €°, so by rule Epair; we know that (ej,eS) — (e, e3), or
equivalently that (e1,e2)® — (€], e2)°

Case for Epairy

Suppose that
erval eg ey

Then by induction we get that e — ef’, so by rule Epair; we know that (e, e3) — (ef,e), or
equivalently that (e1,e2)® — (e1,€5)°

Case for Eproj;

Suppose that
e e

————— FEproj;
;€ — 7Ti€/

Then by induction we get that e® — €, so by rule Eproj; we know that m;(e®) — m;(e’°), or
equivalently that (m;e)® — (m;e’)°.

Case for Eprojo
Suppose that
i€{l,2} eval egval
mi(e1, e2) — €;

Eproja

By Lemma 12.2 we have that e val and ej val. Thus by rule Eprojs we have that m;(e$, €5) — e,
or equivalently m;(eq, e2)° — €5.

Case for Etapp;
Suppose that
e e

— = Bt
e[l efr] PP

Then by induction we get that e® — €’°, so by rule Ftapp; we know that e°[r°] — €”°[7°], or

(o}

equivalently that (e[7])° — (¢'[7])°.

99

Case for Etapps
Suppose that

(ool = [rfale lopp:

We know by definition that (Aa.e)® = Aa.e®, and we have by rule Etapps that (Aa.e®)[r°] —
[T°/ale®, so equivalently ((Aa.e)[T])° — ([T/a]e)°.

Case for Epack
Suppose that

e e Epack
pack|[7’, e] as Ja.7 > pack[r’, €| as Ja.T
Then by induction we get that e — €’°, so by rule Epack we know that pack[r’°,e°] as Ja.7° —
pack([7’°, €’°] as Ja.7°, which is equivalent to (pack[7’, e]as Ja.7)° — (pack[r’, €'] as Ja.T)°.

Case for Eunpacky

Suppose that
e1 €}

Funpackq
unpack|a, x] = ej iney — unpack|a, z] = €] ineg

Then by induction we get that e — €/°, so by rule Funpack; we know unpack[a, x| = €] ine§ —
unpack|w, z] = € ine$, or equivalently that
(unpack|o, z] = €1 iney)® — (unpack|o,] = €] iney)°®
Case for Eunpacks
Suppose that

eval
unpack|a, z] = (pack[r’, e]as Ja.7) iney — [7'/al[e/x]es

FEunpacks

By Lemma 12.2 we get that e¢® val. By rule Funpacks we have that
unpack|a, x] = pack[r°, e°] as Ja.7° ineg — [77°/a][e® /z]ed

Since (pack[7’, e] as J.7)° = pack[7’°, e°] as Ja.7°, this is equivalent to
unpack|a, x] = (pack[r’, e] as Ja.7)° ined — [77°/a][e®/z]ed

Which is also equivalent to (unpack|a,z] = (pack[r/,e]as Ja.7)ines) — ([7'/a]le/x]es)°.

Corollary 12.4. If - g e: 7 and e° |, then e |.

Proof. Suppose - ¢ e: 7 and e° |. Suppose e does not halt. But by Lemma 12.3 this would mean
that e® does not halt, as every time e can take a step, so can €°. But this is a contradiction, so
el. O

100

13 Equivalence Preservation
Theorem 13.1. If A;T Fge=¢€' : 7, then A;T Foge=e : 7.

Proof. Suppose that A;T Fge =2 e : 7. Let C: (A;T>7) ~ (- > int) be some context in the
combined language. We want to show that C{e} ~ C{e’}. Suppose C{e} |, which means that
there is some vval such that C{e} —* v. By Lemma 12.3, we get that (C{e})° —* v°, and by
Lemma 12.2 we know that since v val it must be that v°val. Thus (C{e})° | as well.

Note that since A;T kg e = € : 7 is in the source language, we know that I'° = T', 7° = 1,
e® = e, and €° = ¢/. This implies that C° : (A;T°>7°) ~» (- > int) can equivalently be typed as
C°: (A;T'>7) ~ (->int). This is a context in the source language, and since A;T' Fge = €' : 7 by
assumption, we know that by definition C°{e} ~ C°{e’}. Since we know that (C{e})° = C°{e°} =
C°{e} |, this implies that C°{e’} |. By the above this is equivalent to saying that (C{e’})° |. Then
by Corollary 12.4, we have that C{e'} |.

Therefore, C{e} | = C{e’'} |. Showing the reverse can be proved in a symmetric way. This gives
us that C{e} ~ C{e'}, so therefore A;T' F¢ e = ¢ : 7, as desired. O

Lemma 13.2. If A;T Fge=e :7, A;TFpe:7m,and A;T Fp e i 7, then A;T Fpe=e i 7.

Proof. Suppose that A;T Fge e i 7, A;sTFpe:7,and A;T Fp e i 7.0 Let C: (AT 7) ~
(->int) be some context in the target language. We want to show that C{e} ~ C{e¢’}. However
this follows immediately from our assumption that A;T' g e = €’ : 7, as a context in the target
language is also in the combined language. O

Theorem 13.3. If A;T'Fg e Zes: 7, A;T'Fgep i 7~ €1, and A;I Fg eg @ 7 ~ €3, then
AT Fp e ey 7).

Proof. Suppose that A;T' Fgep 2 ey i 7, ;T Fgep 7~ €1, and A;T Fg es : 7~ €2. By
Theorem 13.1, we know that A;T'Fo e; Z ey : 7. By Theorem 11.5 we get that

AT Fe er = back,([overr/I'er) : 7

A;T Fe ey = back,([overp/Téa) : 7

Thus by transitivity we have that
A;T ¢ back,([overp/T'|é€1) = back, ([overp/Téa) : 7
By the congruence of contextual equivalence, we get that
A;T ke over,(back,([overr/T'|€1)) = over,(back,([overr/T]éa)) : |7
Then by Lemma 11.1 we have that
A;T ke [overp/T'|e; = [overr/Ies : |7|
Again by the congurence of contextual equivalence we have that
A; || ke [backr/T[overr/T'|e; = [backr/T[overp/Tés : |7

Then again by Lemma 11.1, we get that A; |T'| k¢ €3 = €3 : |7], and since both é; and é; are in the
target language, we have by Lemma 13.2 that A; |T'| Fp €3 = é3: |7]. O

101

