
Compiler Correctness via Contextual Equivalence

Matthew McKay advised by Karl Crary

May 2, 2014

1

Abstract

We have developed a methodology for verifying the correctness of the closure conversion

phase of a compiler, adapted from the work by Perconti and Ahmed. This lets us verify that

individual components of programs are compiled correctly, so they can be linked with any other

code and still behave as desired. We do this by using a shared language that encompasses both

the source and target languages in which the compiled code can be reasoned about alongside

its source, which we do using contextual equivalence. Our main improvement over previous

methods is that we dont need boundaries that separate the source and target language while

inside the shared language.

2

1 Introduction

In recent years the area of compiler verification has seen significant research attention. Being

able to formally verify the correctness of a compiler is a worthwhile goal, as it provides confidence

in compilers used for critical systems, which absolutely need their code to be correct. A recent

work on verification on which we will focus most of our attention is Verifying an Open Compiler

Using Multi-Language Semantics [3], by James T. Perconti and Amal Ahmed. Our approach in

the following paper is very similar to theirs, however with some improvements, which make up

the substantial contributions of our research.

The goal with our research is to verify compilation of program components as opposed to

compilation of whole programs. The advantage of this is that realistically, compiled code often

gets linked with other code, be it compiled from the same language, a different language, or

even just written in the language being compiled to. Thus only being able to verify whole

programs severely limits the strength and usefulness of the verification, as we couldn’t verify

code that gets linked with other code later on (or even just libraries). The problem with checking

correctness of components is that they can’t be simply run, as they are not complete programs.

To do this we make use of contextual equivalence. Two program components are said to be

contextually equivalent if, for any potential program context (that is, a program with a hole that

the components fit into) that the components could be put in, the two whole programs created

by putting those components into the same program context will have the same behavior. To

put it simply, the contextual equivalence of two components essentially says that no matter how

we use the two components, we have no way to tell them apart. This is desirable, as it fulfills

our goal to verify that compiled components can be reliably linked with other code and still

behave as intended.

While this sounds great, there is a slight problem. We’re compiling code from some source

language S to a target language T , which are two different languages. So if we have some

term e in the source language that compiles to ē in the target, these two terms are in different

languages, so how can we compare them with contextual equivalence when they can’t be put

into the same program context?

For our purposes we focused on the closure conversion phase of a compiler, compiling a

System F like language, but with the addition of existentials and recursive functions. This is

the source language S, and the target language T is the same except instead of recursive functions

there are closed recursive functions resulting from closure conversion. Closed recursive functions

are simply the same thing as recursive functions, except that they cannot use any variables bound

outside of it and is only allowed to use its argument and its own function variable. Given a term

3

e : τ in the source language, we compile it to a term in the target language ē : |τ |, where |τ | is

the type translation of τ .

To solve the previously mentioned problem, we created a new language C that is the com-

bined language of S and T , that is it includes all types and terms of both languages. Thus it

is simply the language S but with closed recursive functions as well. This allows us to have

program contexts in the combined language, and compare source and target code in the com-

bined language. However a source component may compile to a target component of a different

type (they are different languages, after all). To account for this we define two functions in

the combined language, overτ and backτ . The function overτ takes something in the source

language and changes it at the top level to have the appropriate type |τ | in the target language.

Similarly, backτ does the opposite, taking something in the target language and changing it so

that it has the appropriate type τ in the source language. Of course, these will all be terms

in the combined language, since they include structures from both languages. These functions

don’t actually affect the behavior of the code, as the basically make normal recursive functions

look like closed recursive functions and vice versa (and the two types of functions behave in

much the same way).

This leads to the statement of our compiler correctness theorem. We prove that, if ∆; Γ `S

e : τ is in the source language compiles to ∆; Γ `T ē′ : |τ | in the target language, then e

is contextually equivalent to backτ ([overΓ/Γ]ē′) in the combined language, which we write

∆; Γ `C e ∼= backτ ([overΓ/Γ]ē′) : τ . The reason for the substitution (which simply states

overτ (x) for x in ē′ for every x : τ in Γ) is that it is necessary to prove the variable case of the

theorem. However, we also prove something even stronger. If we know that Γ `S e1
∼= e2 : τ in

the source language, then it must be that ∆; |Γ| `T ē1
∼= ē2 : |τ | in the target language (where

|Γ| simply means Γ but with the types inside translated). This theorem effectively means that

terms that are equivalent in the source language will be equivalent after being compiled, so

therefore compiler preserves equivalence. With a little extra work, this theorem will follow from

our compiler correctness theorem. The full proofs for these can be found in appendix E.

2 Prior Work

The primary previous work that we are concerned with is that of Perconti and Ahmed [3],

which we focused on improving. Their work actually involved three languages, a similar source

language, the closure converted language, and an allocation lanugage. Thus their compilation

involved two stages, closure conversion and allocation.

In their work they had three languages, F (System F with existentials and recursive types),

4

C (the closure converted language), and A (the allocation language). They then merge these lan-

guages together into a multi-language system that, while it includes everything in each language,

still keeps them separate through “boundaries,” as they refer to them. These are essentially

metafunctions added to the languages that convert from one language to another and allow

terms in one language to be placed within a term in another language. Also, since the languages

were still distinguished, they didn’t share type variables, so special conversions were necessary

for polymorphic types when going through boundaries. Their theorem was similar in concept

to ours, as it stated that a term in the source was contextually equivalent to the the compiled

code, just with the proper boundary function applied to it.

3 The Combined Language

Our language (which well refer to as the “combined language”), which is outlined in Figure 1, is

essentially an amplified System F with the addition of existentials and recursive functions (the

reason for recursive functions instead of fix will be explained later). The only other thing to

note is that along with normal recursive functions, there are what we will refer to as “closed”

recursive functions (and correspondingly there is “closed” application to coincide with normal

application), which have their own type and are denoted by the hat over them (and similarly,

their application uses the same symbol).

τ :: = α | unit | int | τ × τ | τ → τ | τ ⇒ τ | ∀α.τ | ∃α.τ

e :: = () | n | e p e | ifz(e, e, e) | x | 〈e, e〉 | πie

| fun f(x : τ).e | e e | f̂un f(x : τ).e | êe
| Λα.e | e[τ] | pack[τ ′, e] as ∃α.τ | unpack[α, x] = e in e

p :: = + | − | ∗

Γ :: = · | Γ, x : τ ∆ ::= · | ∆, α

Figure 1: The combined language

The reason for having two recursive functions is because this combined language is just that,

the combination of two languages, which we will refer to as the “source” language and the

“target” language. The source language is System F with existentials and recursive functions

and the target language is closure converted System F with existentials and recursive functions,

which is simply System F with existentials and closed recursive functions, since the only part of

5

the language that actually changes through closure conversion are the functions and applications.

Thus the source and target languages are identical to the combined language, except without

the rules relating to the type of function that they do not have. We will denote that a term is

typed in the source language by writing ∆; Γ `S e : τ , and similarly we write ∆; Γ `T e : τ for

terms typed in the target language. We also write ∆; Γ `C e : τ when in the combined language,

however since we are primarily discussing the combined language we will forgo its use and just

write ∆; Γ ` e : τ , unless it is necessary for clarity.

In Figure 2 we have the relevant typing rules for functions and closed functions. The full

static and dynamic rules for the combined language can be found in appendices A and B,

respectively. It is worth pointing out that the inside of a closed function can only be typed

under a context of just the function argument and the bound variable for the function, as they

represent functions resulting from closure conversion (hence the name “closed”).

∆ ` τ type ∆; Γ, f : τ → τ ′, x : τ ` e : τ ′

∆; Γ ` fun f(x : τ).e : τ → τ ′
Tfun

∆ ` τ type ∆; f : τ → τ ′, x : τ ` e : τ ′

∆; Γ ` f̂un f(x : τ).e : τ ⇒ τ ′
Tccfun

Figure 2: The static typing rules for functions and closed functions

The purpose for having this combined language is that we can reason about both source

terms and target terms together, which is what we want to be able to use contextual equivalence.

In the following sections, we will first discuss closure conversion, and then outline contextual

equivalence over terms in the combined language and how we actually accomplish it.

4 Closure Conversion

Closure conversion, for our purposes, is very much the standard conversion process. The cor-

responding type translation |τ |, which is mostly trivial, is in Figure 3. We also define the type

translation of a context Γ to be |Γ|, which is defined by | · | = · and |Γ, x : τ | = |Γ|, x : |τ |.

This is necessary for stating things about the compiled code, as it can only use variables of the

translated types, now that it is in the target language.

6

|α| = α

|unit| = unit

|int| = int

|τ1 × τ2| = |τ1| × |τ2|

|τ1 → τ2| = ∃α.((|τ1| × α)⇒ |τ2|)× α

|∀α.τ | = ∀α.|τ |

|∃α.τ | = ∃α.|τ |

Figure 3: The closure conversion type translation

The translation is of the form ∆; Γ `S e ē : τ . The main convenience in analyzing

closure conversion is that the source and target language don’t differ very much, as most of the

conversion doesn’t do anything. The only interesting cases involve functions, namely the rules

for functions and closure converted functions, which are below in Figure 4. The remaining rules

can be found in appendix C.

Γ = x1 : τ1, ..., xn : τn
∆; Γ, x : τ, f : τ → τ ′ `S e : τ ′ ē

∆ `S τ type
τenv = |τ1| × ...× |τn|

∆; Γ `S fun f(x : τ).e : τ → τ ′ pack[τenv,

〈(f̂un f(y : |τ | × τenv).[pack[τenv, 〈f, π2y〉] as |τ → τ ′|/f]
[π1y/x][π1π2y/x1]...[π1π2...π2y/xn−1][π2...π2y/xn]ē

), 〈x1, 〈...〈xn−1, xn〉...〉〉〉] as |τ → τ ′|

Rfun

∆; Γ `S e1 : τ → τ ′ ē1 ∆; Γ `S e2 : τ ē2
∆; Γ `S e1 e2 : τ ′ unpack[α, x] = ē1 in(π1x)̂〈ē2, π2x〉 Rapp

Figure 4: The closure conversion translation rules for functions and applications

4.1 Fix vs. Recursive Functions

One relevant note to discuss is the fact that we used inherently recursive functions instead of

the more general fix operator. We also didn’t use recursive types, as in other similar works [3],

though that was a result of the added complexity that they bring. The reason for not using fix

is because of a problem that arises from performing closure conversion on terms that contain

fix . Suppose in our language we instead had simple lambdas, and had fix with the static

and dynamic rules found in Figure 5.

7

∆; Γ, x : τ ` e : τ

∆; Γ ` fix (x : τ).e : τ
Tfix

fix (x : τ).e 7→ [fix (x : τ).e/x]e
Efix

Figure 5: Static and dynamic rules for fix

Now we can construct the term fix (f : int → int).λx : int.ifz(x, 0, f (x − 1)). This

doesn’t do anything interesting, but it demonstrates the problem with fix and closure conver-

sion. After closure conversion, this translates to

fix (f : int→ int). pack[int→ int, 〈λ̂y : int× (int→ int).ifz(π1y, 0, E), f〉

Where E = unpack[α, z] = π2y in(π1z)̂〈π1y − 1, π2z〉. Define the above to be F . Then this

will step to

pack[int→ int, 〈λ̂y : int× (int→ int).ifz(π1y, 0, E), F 〉

This is because the whole term gets substituted in for f due to the definition of fix . Call the

above F ′. However, for this to be a value, we need the inner term to also be a value (that is,

the term 〈λ̂y : int × (int → int).ifz(π1y, 0, E), F 〉). But we just said that F steps to F ′, so

the second term in the pair can make a step to F ′. But this can also step, so this goes forever

and we never reach a value. This is the problem with fix , as it does not work with closure

conversion, which is why recursive functions were used instead.

5 Contextual Equivalence

The idea behind contextual equivalence is that terms are equivalent if, when both are put into

any program context (a program with a hole in it), they will behave the same (that is, have

the same terminating behavior). This is a practical concept of equivalence because it basically

states that these two programs will always do the same thing no matter how they are used, so

for practical purposes they might as well be the same.

More formally, we say that that two expressions in the combined language, ∆; Γ ` e : τ and

∆; Γ ` e′ : τ , are contextually equivalent, which we write ∆; Γ ` e ∼= e′ : τ , if and only if for

every program context C : (∆; Γ . τ) (· . int), C{e} ' C{e′}, where ' is Kleene equivalence,

which basically says that C{e} and C{e′} have the same terminating behavior. The various

different contexts are outlined in appendix D.

Unfortunately contextual equivalence is not very useful for proving properties since it isn’t

really possible to check all possible contexts and verify that they behave the same. So we

8

developed a logical equivalence, similar to those found in references [1][2][4]. We then prove

that this logical equivalence coincides with contextual equivalence, so that we can use them

interchangebly. This is important for many of the proofs that we need. The full development

of this logical relation, along with the many associated proofs, can be found in appendix E.

What we would ideally like is that, given that ∆; Γ `S e ē : τ , that is that e translates to

ē, we want to be able to say that e and ē are contextually equivalent. But this isn’t possible,

as we have that ∆; Γ ` e : τ and ∆; |Γ| ` ē : |τ |, and it is quite probable that τ and |τ | are not

the same (which is the case if τ includes any arrow type). Thus we have no type at which we

can say the two are contextually equivalent. To resolve this, we developed two functions in the

combined language: overτ and backτ , the definitions for which appear in Figure 6. Note that

we use lambdas (λ) in the definitions for conciseness, they merely represent recursive functions

that do not use their function variable.

overα = λx : α.x

overunit = λx : unit.x

overint = λx : int.x

overτ1×τ2 = λx : τ1 × τ2.〈overτ1π1x, overτ2π2x〉

overτ1→τ2 = λf : τ1 → τ2. pack[τ1 → τ2, 〈λ̂y : |τ1| × (τ1 → τ2).

overτ2((π2y) (backτ1π1y)), f〉] as |τ1 → τ2|

over∀α.τ = λx : (∀α.τ).Λα.(overτ (x[α]))

over∃α.τ = λx : (∃α.τ). unpack[α, y] = x in(pack[α, overτ (y)] as |∃α.τ |)

backα = λx : α.x

backunit = λx : unit.x

backint = λx : int.x

backτ1×τ2 = λx : |τ1 × τ2|.〈backτ1π1x, backτ2π2x〉

backτ1→τ2 = λf : |τ1 → τ2|.λy : τ1. unpack[α, g] = f in backτ2((π1g)̂〈overτ1y, π2g〉)
back∀α.τ = λx : |∀α.τ |.Λα.(backτ (x[α]))

back∃α.τ = λx : |∃α.τ |. unpack[α, y] = x in(pack[α, backτ (y)] as∃α.τ)

Figure 6: The definitions of overτ and backτ

9

Also note that as a shorthand, we define [overΓ/Γ] = [overτ1(x1)/x1]...[overτn(xn)/xn] for

Γ = x1 : τ1, ..., xn : τn. A similar definition applies to backΓ.

By the definitions, it is clear that both functions are in the combined language, and have

the types ∆; Γ ` overτ : τ → |τ | and ∆; Γ ` backτ : |τ | → τ . From this it is clear their

intent, as overτ takes terms of type τ in the source language and converts them to terms of

type |τ | in the target language (and backτ does the opposite). Of course even though it may be

that ∆; Γ `C overτ (e) : |τ |, this does not imply that ∆; Γ `T overτ (e) : |τ |, as e may contain

terms not in the target language (and so might overτ , in fact). Thus these functions purpose

is only for reasoning in the combined language. By looking at their definitions, it is easy to

tell that neither function actually looks inside the term that it is applied to. All it does is pull

apart its type at the top level to convert it to the opposite language’s type, never going into

the term and translating it like closure conversion does. Most cases are simple, just pulling

apart then repackaging the term as the correct type. However the function cases, logically, are

more complicated due to the translation being nontrivial. The function overτ→τ ′ essentially

creates an empty closure and wraps the function up so it looks like the right existential (and

also converts the new argument back). Opposingly, the function backτ→τ ′ takes an existential

of the correct type and pulls out the closure and uses it to call the function with the converted

argument.

The most important result of this is that we now have a way to look at compiled code as if

it were really source code, and vice versa. Now we can do what we originally wanted to, that

source code and its compiled code are contextually equivalent (or at least, almost). It is also

necessary that these two functions are inverses of one another, that is that

overτ ◦ backτ = id = backτ ◦ overτ

The proof of this, along with the many other relevant proofs, can be found in appendix E.

Using this and our logical equivalence we can show that if ∆; Γ `S e ē : τ , then ∆; Γ ` e ∼=

backτ ([overΓ/Γ]ē) : τ . By the above this also means that ∆; |Γ| ` overτ ([backΓ/Γ]e) ∼= ē : |τ |.

Since overτ and backτ don’t actually effect the behavior of the code, these imply that the source

code and the compiled code do in fact behave the same.

There is one particularly interesting point that we will note about the proof of the above

theorem. There are two essentially “dual” lemmas regarding polymorphism that are the key to

doing the proof. These lemmas related two slightly different uses of each of the overτ and backτ

in our logical equivalence. The parametricity of the logical equivalence was necessary here, as

it allowed us to use exactly the right relations to make the lemmas hold. One of the lemmas

was necessary for proving the polymorphic application case in the main theorem, and the other

10

lemma was necessary for proving the existential pack case. Unfortunately fully understanding

the lemmas involves understanding the logical equivalence, but we will give a basic idea of the

lemmas here. To see the lemmas in their entirety, look at sections 11.3 and 11.4 in appendix E.

To help understand the lemmas, we will focus specifically on one part of one of them. What

this does is effectively relate [τ ′/α]backτ to back[τ ′/α]τ at the type |τ | → [τ ′/α]τ in our logical

equivalence. Looking at these, [τ ′/α]backτ converts the type of what it is called on up to τ , then

leaves the α alone. On the other hand, back[τ ′/α]τ converts everything, including the α type

variable. This is basically saying that, under the right relation, we can pull the type substitution

out of the back function to the top level, saying that converting the α part of the argument

is equivalent to not converting it. The other parts of the lemmas say similar things, just with

different configurations of over and back. These lemmas are necessary to complete the proof

cases related to polymorphic and existential types.

5.1 Erasure

However, we still have our final theorem to justify. To do this we need abstraction between

our source and combined languages, as well as our combined and target languages. What this

means is that, we want to be able to say that if two terms are equivalent in the source, then

they are equivalent in the combined language, and similarly that if two terms are equivalent in

the combined language, then they are equivalent in the target. This will let us prove the final

theorem. Going from the combined language to target is simple, as the language gets smaller.

However, going from the source to the combined language is a little more subtle. The reason it

isn’t obvious is because the combined language includes something (specifically closed recursive

functions) that does not appear in the source. It is still simple, as logically the closed recursive

functions don’t provide any functionality that normal recursive functions don’t already provide,

so we can prove it with another translation, which we will call erasure. The actual translation is

simple, so we won’t say more about it here other than that all it does is convert closed recursive

functions to normal recursive functions. For the full translation, see appendix E.

As for what we do with erasure, as mentioned above this lets us say that terms equivalent in

the source language are equivalent in the combined language. Thus if we assume that terms e1

and e2 are contextually equivalent in the source, we know that they are contextually equivalent

in the combined language. But by our earlier theorem we know that each of these is contextually

equivalent to the back of their compiled selves, that is ∆; Γ ` e1
∼= backτ ([overΓ/Γ]ē1) : τ and

∆; Γ ` e2
∼= backτ ([overΓ/Γ]ē2) : τ . Transitivity then gets us that ∆; Γ ` backτ ([overΓ/Γ]ē1) ∼=

backτ ([overΓ/Γ]ē2) : τ , from which some simple reasoning using the fact that overτ and backτ

are inverses, we can get that ē1 is contextually equivalent to ē2 This proves our desired final

11

theorem, and proves that our compiler preserves equivalence.

6 Comparison with Prior Work

As mentioned previously, our work is an attempt to improve upon the work done by James T.

Perconti and Amal Ahmed [3]. While their work spanned two compilation phases, we can only

compare our work to the first, the closure conversion phase, since that is what our work focuses

on.

The main difference is that in their work, while they do merge the source and target languages

together, they still keep them separate and only go from one to another using boundaries, which

are additional terms that can put a term from one language into a term for another language. In

some sense, these perform a similar operation to our overτ and backτ functions, however overτ

and backτ are written as functions in the combined language, so they have the advantage of not

being hardwired into the language itself. In their paper they also have to handle a few special

cases for type variables from one language occurring inside components of another language,

which they solve using suspended type variables and lump types. Our method has no need for

either of these, as in the combined language, type variables are not distinguished between the

two languages. That is, a type variable in a source term and a type variable in a target term

look the same in the combined language, as they are just normal type variables there. This is

all due to the fact that there are no boundaries between the language. Since the two languages

are completely combined, they share type variables, along with most other things.

This makes the actual reasoning about the compiler significantly simpler, as there isn’t a

lot of extra conversion that is taking place besides the main compilation. While our overτ and

backτ functions do a little work, they are really just there to make types line up properly, not

act as a connection between the languages that is built into the language. This is our main

contribution, the improvement over prior work.

7 Future Work

We have already mentioned how our method is meant to be an improvement on the work by

Perconti and Ahmed [3]. However, we have only improved the first half of the work that they

did, which was the compilation phase of closure conversion. Their work also extended into an

allocation phase of a compiler, going between three languages total. In the future, work could be

done to apply our methodology to the allocation phase of a compiler and see if it can be made to

work for that as well. It could even potentially be extended to other stages of compilation. The

12

main difficulty will be combining the languages, as other compiler phases have a much greater

difference between the source and target languages. Closure conversion was a good phase to

start with to see if it was possible, though due to only having one primary difference between

languages it made the combination of the languages easier to reason about.

There is certainly a lot of potential for this method to be applied to other cases, since the

general approach used is not specific to the language used. It will, however, likely be much more

difficult as the combined language grows in complexity.

13

References

[1] Karl Crary and Bob Harper. Syntactic logical relations for polymorphic and recursive types.

Electronic Notes in Theoretical Computer Science, 172:259–299, 2007.

[2] Bob Harper. Practical Foundations for Programming Languages, chapter 49. Cambridge

University Press, 2012.

[3] James T. Perconti and Amal Ahmed. Verifying an open compiler using multi-language

semantics. Proceedings of the 23rd European Symposium on Programming, 2014.

[4] Benjamin Pierce, editor. Advanced Topics in Types and Programming Languages, chapter 7.

MIT Press, 2004.

14

A Combined Language Statics

A.1 Types

∆ ` unit type Dunit
∆ ` int type Dint

∆, α ` α type Dvar
∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 × τ2 type
Dpair

∆ ` τ1 type ∆ ` τ2 type
∆ ` τ1 → τ2 type

Dfun
∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 ⇒ τ2 type
Dccfun

∆, α ` τ type
∆ ` ∀α.τ type Dforall

∆, α ` τ type
∆ ` ∃α.τ type Dexists

A.2 Terms

∆; Γ ` () : unit
Tunit

Γ(x) = τ

∆; Γ ` x : τ
Tvar

∆; Γ ` n : int
Tint

∆; Γ ` e1 : int ∆; Γ ` e2 : int

∆; Γ ` e1 p e2 : int
Tintop

∆; Γ ` e1 : int ∆; Γ ` e2 : τ ∆; Γ ` e3 : τ

∆; Γ ` ifz(e1, e2, e3) : τ
T ifz

∆ ` τ type ∆; Γ, f : τ → τ ′, x : τ ` e : τ ′

∆; Γ ` fun f(x : τ).e : τ → τ ′
Tfun

∆; Γ ` e1 : τ → τ ′ ∆; Γ ` e2 : τ

∆; Γ ` e1 e2 : τ ′
Tapp

∆ ` τ type ∆; f : τ → τ ′, x : τ ` e : τ ′

∆; Γ ` f̂un f(x : τ).e : τ ⇒ τ ′
Tccfun

∆; Γ ` e1 : τ ⇒ τ ′ ∆; Γ ` e2 : τ

∆; Γ ` e1̂e2 : τ ′
Tccapp

∆; Γ ` e1 : τ1 ∆; Γ ` e2 : τ2
∆; Γ ` 〈e1, e2〉 : τ1 × τ2

Tpair
∆; Γ ` e : τ1 × τ2 i ∈ {1, 2}

∆; Γ ` πie : τi
Tproj

∆, α; Γ ` e : τ

∆; Γ ` Λα.e : ∀α.τ T tlam
∆; Γ ` e : ∀α.τ ∆; Γ ` τ ′ type

∆; Γ ` e[τ ′] : [τ ′/α]τ
T tapp

∆ ` τ ′ type ∆, α ` τ type ∆; Γ ` e : [τ ′/α]τ

∆; Γ ` pack[τ ′, e] as ∃α.τ : ∃α.τ
Tpack

∆; Γ ` e1 : ∃α.τ1 ∆, α; Γ, x : τ1 ` e2 : τ2 ∆ ` τ2 type
∆; Γ ` unpack[α, x] = e1 in e2 : τ2

Tunpack

15

B Combined Language Dynamics

B.1 Values

() val
V unit

n val V int
e1 val e2 val

〈e1, e2〉 val
V pair

fun f(x : τ).e val
V fun

f̂un f(x : τ).e val
V ccfun

Λα.e val
V tlam

e val
pack[τ ′, e] as∃α.τ val

V pack

B.2 Evaluation
e1 7→ e′1

e1 p e2 7→ e′1 p e2
Eintop1

e2 7→ e′2
n1 p e2 7→ n1 p e

′
2

Eintop2
n1 pn2 = n
n1 pn2 7→ n Eintop3

e1 7→ e′1
ifz(e1, e2, e3) 7→ ifz(e′1, e2, e3)

Eifz1

n = 0
ifz(n, e2, e3) 7→ e2

Eifz2
n 6= 0

ifz(n, e2, e3) 7→ e3
Eifz3

e1 7→ e′1
e1 e2 7→ e′1 e2

Eapp1

e2 7→ e′2
(fun f(x : τ).e) e2 7→ (fun f(x : τ).e) e′2

Eapp2

e2 val

(fun f(x : τ).e) e2 7→ [fun f(x : τ).e/f][e2/x]e
Eapp3

e1 7→ e′1
e1̂e2 7→ e′1̂e2

Eccapp1

e2 7→ e′2

(f̂un f(x : τ).e)̂e2 7→ (f̂un f(x : τ).e)̂e′2 Eccapp2

e2 val

(f̂un f(x : τ).e)̂e2 7→ [f̂un f(x : τ).e/f][e2/x]e
Eccapp3

e1 7→ e′1
〈e1, e2〉 7→ 〈e′1, e2〉

Epair1

e1 val e2 7→ e′2
〈e1, e2〉 7→ 〈e1, e

′
2〉

Epair2

e 7→ e′

πie 7→ πie
′ Eproj1

i ∈ {1, 2} e1 val e2 val

πi〈e1, e2〉 7→ ei
Eproj2

e 7→ e′

e[τ] 7→ e′[τ]
Etapp1

(Λα.e)[τ] 7→ [τ/α]e
Etapp2

16

e 7→ e′

pack[τ ′, e] as∃α.τ 7→ pack[τ ′, e′] as∃α.τ
Epack

e1 7→ e′1
unpack[α, x] = e1 in e2 7→ unpack[α, x] = e′1 in e2

Eunpack1

e val
unpack[α, x] = (pack[τ ′, e] as∃α.τ) in e2 7→ [τ ′/α][e/x]e2

Eunpack2

C Closure Conversion

∆; Γ `S () : unit ()
Runit

Γ(x) = τ

∆; Γ `S x : τ x
Rvar

∆; Γ `S n : int n
Rint

∆; Γ `S e1 : int ē1 ∆; Γ `S e2 : int ē2

∆; Γ `S e1 p e2 : int ē1 p ē2
Rintop

∆; Γ `S e1 : int ē1 ∆; Γ `S e2 : τ ē2 ∆; Γ `S e3 : τ ē3

∆; Γ `S ifz(e1, e2, e3) : τ ifz(ē1, ē2, ē3)
Rifz

∆; Γ `S e1 : τ1 ē1 ∆; Γ `S e2 : τ2 ē2

∆; Γ `S 〈e1, e2〉 : τ1 × τ2 〈ē1, ē2〉
Rpair

∆; Γ `S e : τ1 × τ2 ē i ∈ {1, 2}
∆; Γ `S πie : τi πiē

Rproj

∆, α; Γ `S e : τ ē

∆; Γ `S Λα.e : ∀α.τ Λα.ē
Rtlam

∆; Γ `S e : ∀α.τ ē ∆ `S τ ′ type
∆; Γ `S e[τ ′] : [τ ′/α]τ ē[|τ ′|]

Rtapp

∆ `S τ ′ type ∆, α `S τ type ∆; Γ `S e : [τ ′/α]τ ē

∆; Γ `S pack[τ ′, e] as∃α.τ : ∃α.τ pack[|τ ′|, ē] as∃α.|τ |
Rpack

∆; Γ `S e1 : ∃α.τ1 ē1 ∆, α; Γ, x : τ1 `S e2 : τ2 ē2 ∆ `S τ2 type
∆; Γ `S unpack[α, x] = e1 in e2 : τ2 unpack[α, x] = ē1 in ē2

Runpack

Γ = x1 : τ1, ..., xn : τn
∆; Γ, x : τ, f : τ → τ ′ `S e : τ ′ ē

∆ `S τ type
τenv = |τ1| × ...× |τn|

∆; Γ `S fun f(x : τ).e : τ → τ ′ pack[τenv,

〈(f̂un f(y : |τ | × τenv).[pack[τenv, 〈f, π2y〉] as |τ → τ ′|/f]
[π1y/x][π1π2y/x1]...[π1π2...π2y/xn−1][π2...π2y/xn]ē

), 〈x1, 〈...〈xn−1, xn〉...〉〉〉] as |τ → τ ′|

Rfun

17

∆; Γ `S e1 : τ → τ ′ ē1 ∆; Γ `S e2 : τ ē2

∆; Γ `S e1 e2 : τ ′ unpack[α, x] = ē1 in(π1x)̂〈ē2, π2x〉
Rapp

D Contexts

◦ : (∆; Γ . τ) (∆; Γ . τ)
Cid

C : (∆; Γ . τ) (∆′; Γ′ . int) ∆′; Γ′ ` e : int

C p e : (∆; Γ . τ) (∆′; Γ′ . int)
Cintop1

C : (∆; Γ . τ) (∆′; Γ′ . int) ∆′; Γ′ ` e : int

e p C : (∆; Γ . τ) (∆′; Γ′ . int)
Cintop2

C : (∆; Γ . τ) (∆′; Γ′ . int) ∆′; Γ′ ` e2 : τ ′ ∆′; Γ′ ` e3 : τ ′

ifz(C, e2, e3) : (∆; Γ . τ) (∆′; Γ′ . τ ′)
Cifz1

∆′; Γ′ ` e1 : int C : (∆; Γ . τ) (∆′; Γ′ . τ ′) ∆′; Γ′ ` e3 : τ ′

ifz(e1, C, e3) : (∆; Γ . τ) (∆′; Γ′ . τ ′)
Cifz2

∆′; Γ′ ` e1 : int C : (∆; Γ . τ) (∆′; Γ′ . τ ′) ∆′; Γ′ ` e2 : τ ′

ifz(e1, e2, C) : (∆; Γ . τ) (∆′; Γ′ . τ ′)
Cifz3

C : (∆; Γ . τ) (∆′; Γ′, f : τ1 → τ2, x : τ1 . τ2) ∆′ ` τ1 type
fun f(x : τ1).C : (∆; Γ . τ) (∆′; Γ′ . τ1 → τ2)

Cfun

C : (∆; Γ . τ) (∆; f : τ1 → τ2, x : τ1 . τ2) ∆′ ` τ1 type
f̂un f(x : τ1).C : (∆; Γ . τ) (∆′; Γ′ . τ1 ⇒ τ2)

Cccfun

C : (∆; Γ . τ) (∆′; Γ′ . τ1 → τ2) ∆′; Γ′ ` e : τ1

C e : (∆; Γ . τ) (∆′; Γ′ . τ2)
Capp1

C : (∆; Γ . τ) (∆′; Γ′ . τ1) ∆′; Γ′ ` e : τ1 → τ2

e C : (∆; Γ . τ) (∆′; Γ′ . τ2)
Capp2

C : (∆; Γ . τ) (∆′; Γ′ . τ1 ⇒ τ2) ∆′; Γ′ ` e : τ1

Ĉe : (∆; Γ . τ) (∆′; Γ′ . τ2)
Cccapp1

C : (∆; Γ . τ) (∆′; Γ′ . τ1) ∆′; Γ′ ` e : τ1 ⇒ τ2

êC : (∆; Γ . τ) (∆′; Γ′ . τ2)
Cccapp2

18

C : (∆; Γ . τ) (∆′; Γ′ . τ1) ∆′; Γ′ ` e : τ2

〈C, e〉 : (∆; Γ . τ) (∆′; Γ′ . τ1 × τ2)
Cpair1

C : (∆; Γ . τ) (∆′; Γ′ . τ2) ∆′; Γ′ ` e : τ1

〈e, C〉 : (∆; Γ . τ) (∆′; Γ′ . τ1 × τ2)
Cpair2

C : (∆; Γ . τ) (∆′; Γ′ . τ1 × τ2) i ∈ {1, 2}
πiC : (∆; Γ . τ) (∆′; Γ′ . τi)

Cproj

C : (∆; Γ . τ) (∆′, α; Γ′ . τ ′)

Λα.C : (∆; Γ . τ) (∆′; Γ′ . ∀α.τ ′) Ctlam

C : (∆; Γ . τ) (∆′; Γ′ . ∀α.τ ′) ∆′ ` τ ′′ type
C[τ ′′] : (∆; Γ . τ) (∆′; Γ′ . [τ ′′/α]τ ′)

Ctapp

∆′ ` τ ′′ type ∆′, α ` τ ′ type C : (∆; Γ . τ) (∆′; Γ′ . [τ ′′/α]τ ′)

pack[τ ′′, C] as ∃α.τ ′ : (∆; Γ . τ) (∆′; Γ′ . ∃α.τ ′)
Cpack

C : (∆; Γ . τ) (∆′; Γ′ . ∃α.τ1) ∆′, α; Γ′, x : τ1 ` e : τ2 ∆′ ` τ2 type
unpack[α, x] = C in e : (∆; Γ . τ) (∆′; Γ′ . τ2)

Cunpack1

C : (∆; Γ . τ) (∆′, α; Γ′, x : τ1 . τ2) ∆′; Γ′ ` e : ∃α.τ1 ∆′ ` τ2 type
unpack[α, x] = e in C : (∆; Γ . τ) (∆′; Γ′ . τ2)

Cunpack2

E Proofs

The following is a full account of all proofs involved in the above paper. Some of the above

information will be repeated, as they are mentioned where they first appear in the proofs. The

proofs read in order, so any lemmas/theorems used in a proof will have been proven before it.

19

Contents

1 Languages 3

1.1 Source Language . 3

1.2 Target Language . 3

1.3 Combined Language . 3

2 Combined Statics 4

2.1 Types . 4

2.2 Terms . 4

3 Combined Dynamics 6

3.1 Values . 6

3.2 Evaluation . 6

3.3 Termination . 7

4 Contexts 8

4.1 Context Composition . 10

5 Contextual Equivalence 13

5.1 Definitions . 13

5.2 Substitutivity . 15

6 Compactness 20

6.1 Simulation . 22

6.2 Compactness . 33

7 Relations 34

7.1 ST Closure . 34

7.2 Admissibility . 36

8 Logical Equivalence 37

8.1 Compositionality . 40

9 Logical and Contextual Equivalence Coincide 43

9.1 Reflexivity . 43

9.2 Congruence . 51

9.3 Respect for Contextual Equivalence . 51

9.4 Logical Equivalence implies Contextual Equivalence 52

9.5 Contextual Equivalence implies Logical Equivalence 52

1

10 Closure Conversion 53

10.1 Translation . 53

10.2 Fix vs. Recursive Functions . 54

11 Language Conversion 55

11.1 Over and Back . 55

11.2 Inverses . 55

11.3 The Back Relation . 63

11.4 The Over Relation . 73

11.5 Translation Equivalence . 83

12 Erasure 94

12.1 Static Erasure . 94

12.2 Dynamic Erasure . 97

13 Equivalence Preservation 101

2

1 Languages

1.1 Source Language

τ :: = α | unit | int | τ × τ | τ → τ | ∀α.τ | ∃α.τ
e :: = () | n | e p e | ifz(e, e, e) | x | 〈e, e〉 | πie | fun f(x : τ).e | e e | Λα.e | e[τ]

| pack[τ ′, e] as ∃α.τ | unpack[α, x] = e in e

p :: = + | − | ∗
Γ :: = · | Γ, x : τ

∆ :: = · | ∆, α

1.2 Target Language

τ :: = α | unit | int | τ × τ | τ ⇒ τ | ∀α.τ | ∃α.τ
e :: = () | n | e p e | ifz(e, e, e) | x | 〈e, e〉 | πie | f̂un f(x : τ).e | êe | Λα.e | e[τ]

| pack[τ ′, e] as ∃α.τ | unpack[α, x] = e in e

p :: = + | − | ∗
Γ :: = · | Γ, x : τ

∆ :: = · | ∆, α

As a shorthand, we write λx : τ.e to stand for fun f(x : τ).e when f is not used in e (meaning
that x : τ ` e : τ ′, assuming otherwise closed terms). Similarly, we write λ̂x : τ.e to stand for
f̂un f(x : τ).e when f is not used in e (meaning that x : τ ` e : τ ′, assuming otherwise closed
terms).

1.3 Combined Language

τ :: = α | unit | int | τ × τ | τ → τ | τ ⇒ τ | ∀α.τ | ∃α.τ
e :: = () | n | e p e | ifz(e, e, e) | x | 〈e, e〉 | πie | fun f(x : τ).e | e e | f̂un f(x : τ).e | êe
| Λα.e | e[τ] | pack[τ ′, e] as ∃α.τ | unpack[α, x] = e in e

p :: = + | − | ∗
Γ :: = · | Γ, x : τ

∆ :: = · | ∆, α

3

2 Combined Statics

2.1 Types

∆ ` unit type Dunit
∆ ` int type Dint

∆, α ` α type Dvar
∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 × τ2 type
Dpair

∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 → τ2 type
Dfun

∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 ⇒ τ2 type
Dccfun

∆, α ` τ type
∆ ` ∀α.τ type Dforall

∆, α ` τ type
∆ ` ∃α.τ type Dexists

2.2 Terms

∆; Γ ` () : unit
Tunit

Γ(x) = τ

∆; Γ ` x : τ
Tvar

∆; Γ ` n : int
Tint

∆; Γ ` e1 : int ∆; Γ ` e2 : int

∆; Γ ` e1 p e2 : int
Tintop

∆; Γ ` e1 : int ∆; Γ ` e2 : τ ∆; Γ ` e3 : τ

∆; Γ ` ifz(e1, e2, e3) : τ
T ifz

∆ ` τ type ∆; Γ, f : τ → τ ′, x : τ ` e : τ ′

∆; Γ ` fun f(x : τ).e : τ → τ ′
Tfun

∆; Γ ` e1 : τ → τ ′ ∆; Γ ` e2 : τ

∆; Γ ` e1 e2 : τ ′
Tapp

∆ ` τ type ∆; f : τ → τ ′, x : τ ` e : τ ′

∆; Γ ` f̂un f(x : τ).e : τ ⇒ τ ′
Tccfun

∆; Γ ` e1 : τ ⇒ τ ′ ∆; Γ ` e2 : τ

∆; Γ ` e1̂e2 : τ ′
Tccapp

∆; Γ ` e1 : τ1 ∆; Γ ` e2 : τ2

∆; Γ ` 〈e1, e2〉 : τ1 × τ2
Tpair

∆; Γ ` e : τ1 × τ2 i ∈ {1, 2}
∆; Γ ` πie : τi

Tproj

∆, α; Γ ` e : τ

∆; Γ ` Λα.e : ∀α.τ T tlam
∆; Γ ` e : ∀α.τ ∆; Γ ` τ ′ type

∆; Γ ` e[τ ′] : [τ ′/α]τ
T tapp

∆ ` τ ′ type ∆, α ` τ type ∆; Γ ` e : [τ ′/α]τ

∆; Γ ` pack[τ ′, e] as ∃α.τ : ∃α.τ
Tpack

4

∆; Γ ` e1 : ∃α.τ1 ∆, α; Γ, x : τ1 ` e2 : τ2 ∆ ` τ2 type

∆; Γ ` unpack[α, x] = e1 in e2 : τ2
Tunpack

The statics are the same for the source language, except without rules Dccfun, Tccfun, and
Tccapp. We also say that ∆; Γ `S e : τ to indicate that e can be typed at τ in the source language.

The statics are the same for the target language, except without rules Dfun, Tfun, and Tapp.
We also say that ∆; Γ `T e : τ to indicate that e can be typed at τ in the target language.

Clearly if either ∆; Γ `S e : τ or ∆; Γ `T e : τ then ∆; Γ ` e : τ , in the combined language.

5

3 Combined Dynamics

3.1 Values

() val
V unit

n val V int
e1 val e2 val

〈e1, e2〉 val
V pair

fun f(x : τ).e val
V fun

f̂un f(x : τ).e val
V ccfun

Λα.e val
V tlam

e val
pack[τ ′, e] as ∃α.τ val

V pack

3.2 Evaluation

e1 7→ e′1
e1 p e2 7→ e′1 p e2

Eintop1
e2 7→ e′2

n1 p e2 7→ n1 p e
′
2

Eintop2
n1 pn2 = n
n1 pn2 7→ n Eintop3

e1 7→ e′1
ifz(e1, e2, e3) 7→ ifz(e′1, e2, e3)

Eifz1

n = 0
ifz(n, e2, e3) 7→ e2

Eifz2
n 6= 0

ifz(n, e2, e3) 7→ e3
Eifz3

e1 7→ e′1
e1 e2 7→ e′1 e2

Eapp1
e2 7→ e′2

(fun f(x : τ).e) e2 7→ (fun f(x : τ).e) e′2
Eapp2

e2 val

(fun f(x : τ).e) e2 7→ [fun f(x : τ).e/f][e2/x]e
Eapp3

e1 7→ e′1
e1̂e2 7→ e′1̂e2

Eccapp1

e2 7→ e′2

(f̂un f(x : τ).e)̂e2 7→ (f̂un f(x : τ).e)̂e′2 Eccapp2

e2 val

(f̂un f(x : τ).e)̂e2 7→ [f̂un f(x : τ).e/f][e2/x]e
Eccapp3

e1 7→ e′1
〈e1, e2〉 7→ 〈e′1, e2〉

Epair1
e1 val e2 7→ e′2
〈e1, e2〉 7→ 〈e1, e

′
2〉
Epair2

e 7→ e′

πie 7→ πie
′ Eproj1

i ∈ {1, 2} e1 val e2 val

πi〈e1, e2〉 7→ ei
Eproj2

e 7→ e′

e[τ] 7→ e′[τ]
Etapp1

(Λα.e)[τ] 7→ [τ/α]e
Etapp2

6

e 7→ e′

pack[τ ′, e] as∃α.τ 7→ pack[τ ′, e′] as ∃α.τ
Epack

e1 7→ e′1
unpack[α, x] = e1 in e2 7→ unpack[α, x] = e′1 in e2

Eunpack1

e val
unpack[α, x] = (pack[τ ′, e] as∃α.τ) in e2 7→ [τ ′/α][e/x]e2

Eunpack2

The dynamics are the same for the source language, except without rules V ccfun, Eccapp1,
Eccapp2, and Eccapp3.

The dynamics are the same for the source language, except without rules V fun, Eapp1, Eapp2,
and Eapp3.

3.3 Termination

Definition An expression terminates (or halts) if it steps to a value after a finite number of steps.
With the introduction of recursive functions, we can now have divergent expressions. We define
termination, written e ↓, as follows:

e val
e ↓ Hval

e 7→ e′ e′ ↓
e ↓ Hstep

For simplicity, from now on consider v to be an expression e such that e val.

Also, for convenience we define the symbol ⊥ to be any term that does not terminate. An example
of this is

⊥ = (fun f(x : unit).f x)()

This clearly does not terminate, as it steps to itself.

7

4 Contexts

o : (∆; Γ . τ) (∆; Γ . τ)
Cid

C : (∆; Γ . τ) (∆′; Γ′ . int) ∆′; Γ′ ` e : int

C p e : (∆; Γ . τ) (∆′; Γ′ . int)
Cintop1

C : (∆; Γ . τ) (∆′; Γ′ . int) ∆′; Γ′ ` e : int

e p C : (∆; Γ . τ) (∆′; Γ′ . int)
Cintop2

C : (∆; Γ . τ) (∆′; Γ′ . int) ∆′; Γ′ ` e2 : τ ′ ∆′; Γ′ ` e3 : τ ′

ifz(C, e2, e3) : (∆; Γ . τ) (∆′; Γ′ . τ ′)
Cifz1

∆′; Γ′ ` e1 : int C : (∆; Γ . τ) (∆′; Γ′ . τ ′) ∆′; Γ′ ` e3 : τ ′

ifz(e1, C, e3) : (∆; Γ . τ) (∆′; Γ′ . τ ′)
Cifz2

∆′; Γ′ ` e1 : int C : (∆; Γ . τ) (∆′; Γ′ . τ ′) ∆′; Γ′ ` e2 : τ ′

ifz(e1, e2, C) : (∆; Γ . τ) (∆′; Γ′ . τ ′)
Cifz3

C : (∆; Γ . τ) (∆′; Γ′, f : τ1 → τ2, x : τ1 . τ2) ∆′ ` τ1 type

fun f(x : τ1).C : (∆; Γ . τ) (∆′; Γ′ . τ1 → τ2)
Cfun

C : (∆; Γ . τ) (∆; f : τ1 → τ2, x : τ1 . τ2) ∆′ ` τ1 type

f̂un f(x : τ1).C : (∆; Γ . τ) (∆′; Γ′ . τ1 ⇒ τ2)
Cccfun

C : (∆; Γ . τ) (∆′; Γ′ . τ1 → τ2) ∆′; Γ′ ` e : τ1

C e : (∆; Γ . τ) (∆′; Γ′ . τ2)
Capp1

C : (∆; Γ . τ) (∆′; Γ′ . τ1) ∆′; Γ′ ` e : τ1 → τ2

e C : (∆; Γ . τ) (∆′; Γ′ . τ2)
Capp2

C : (∆; Γ . τ) (∆′; Γ′ . τ1 ⇒ τ2) ∆′; Γ′ ` e : τ1

Ĉe : (∆; Γ . τ) (∆′; Γ′ . τ2)
Cccapp1

C : (∆; Γ . τ) (∆′; Γ′ . τ1) ∆′; Γ′ ` e : τ1 ⇒ τ2

êC : (∆; Γ . τ) (∆′; Γ′ . τ2)
Cccapp2

C : (∆; Γ . τ) (∆′; Γ′ . τ1) ∆′; Γ′ ` e : τ2

〈C, e〉 : (∆; Γ . τ) (∆′; Γ′ . τ1 × τ2)
Cpair1

8

C : (∆; Γ . τ) (∆′; Γ′ . τ2) ∆′; Γ′ ` e : τ1

〈e, C〉 : (∆; Γ . τ) (∆′; Γ′ . τ1 × τ2)
Cpair2

C : (∆; Γ . τ) (∆′; Γ′ . τ1 × τ2) i ∈ {1, 2}
πiC : (∆; Γ . τ) (∆′; Γ′ . τi)

Cproj

C : (∆; Γ . τ) (∆′, α; Γ′ . τ ′)

Λα.C : (∆; Γ . τ) (∆′; Γ′ . ∀α.τ ′) Ctlam

C : (∆; Γ . τ) (∆′; Γ′ . ∀α.τ ′) ∆′ ` τ ′′ type
C[τ ′′] : (∆; Γ . τ) (∆′; Γ′ . [τ ′′/α]τ ′)

Ctapp

∆′ ` τ ′′ type ∆′, α ` τ ′ type C : (∆; Γ . τ) (∆′; Γ′ . [τ ′′/α]τ ′)

pack[τ ′′, C] as ∃α.τ ′ : (∆; Γ . τ) (∆′; Γ′ . ∃α.τ ′)
Cpack

C : (∆; Γ . τ) (∆′; Γ′ . ∃α.τ1) ∆′, α; Γ′, x : τ1 ` e : τ2 ∆′ ` τ2 type

unpack[α, x] = C in e : (∆; Γ . τ) (∆′; Γ′ . τ2)
Cunpack1

C : (∆; Γ . τ) (∆′, α; Γ′, x : τ1 . τ2) ∆′; Γ′ ` e : ∃α.τ1 ∆′ ` τ2 type

unpack[α, x] = e in C : (∆; Γ . τ) (∆′; Γ′ . τ2)
Cunpack2

9

4.1 Context Composition

Lemma 4.1. If C : (∆; Γ . τ) (∆′; Γ′ . τ ′) and C′ : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′), then C′{C{o}} :
(∆; Γ . τ) (∆′′; Γ′′ . τ ′′).

Proof. By induction over the context typing rules on C′.

Case for Cid
Assume that C′ = o : (∆′; Γ′ . τ ′) (∆′; Γ′ . τ ′) and C : (∆; Γ . τ) (∆′; Γ′ . τ ′). We know that
C{o} : (∆; Γ . τ) (∆′; Γ′ . τ ′), which is equivalent to o{C{o}} : (∆; Γ . τ) (∆′; Γ′ . τ ′), and
therefore C′{C{o}} : (∆; Γ . τ) (∆′; Γ′ . τ ′), as required.

Case for Cintop1

Assume that C′ = C′′ p e : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . int) and C : (∆; Γ . τ) (∆′; Γ′ . τ ′). By
induction on C′′ we get that C′′{C{o}} : (∆; Γ. τ) (∆′′; Γ′′ .int). Then by rule Cintop1, we have
that C′′{C{o}} p e : (∆; Γ . τ) (∆′′; Γ′′ . int), which is equivalent to (C′′ p e){C{o}} : (∆; Γ . τ)
(∆′′; Γ′′ . int), and so C′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . int).

Case for Cintop2

Essentially the same as Cintop1.

Case for Cifz1

Assume that C′ = ifz(C′′, e2, e3) : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′) and C : (∆; Γ . τ) (∆′; Γ′ . τ ′). By
induction on C′′ we get that C′′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . int). Then by rule Cifz1, we have
that ifz(C′′{C{o}}, e2, e3) : (∆; Γ.τ) (∆′′; Γ′′ .τ ′′), which is equivalent to ifz(C′′, e2, e3){C{o}} :
(∆; Γ . τ) (∆′′; Γ′′ . τ ′′), and so C′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′).

Case for Cifz2

Assume that C′ = ifz(e1, C′′, e3) : (∆′; Γ′ . τ ′) (∆′; Γ′′ . τ ′′) and C : (∆; Γ . τ) (∆′; Γ′ . τ ′). By
induction on C′′ we get that C′′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′). Then by rule Cifz1, we have
that ifz(e1, C′′{C{o}}, e3) : (∆; Γ.τ) (∆′′; Γ′′ .τ ′′), which is equivalent to ifz(e1, C′′, e3){C{o}} :
(∆; Γ . τ) (∆′′; Γ′′ . τ ′′), and so C′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′).

Case for Cifz3

Essentially the same as Cifz2.

Case for Cfun
Assume that C′ = fun f(x : τ ′′1).C′′ : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′1 → τ ′′2) and C : (∆; Γ . τ)
(∆′; Γ′.τ ′). By induction on C′′ we get that C′′{C{o}} : (∆; Γ.τ) (∆′′; Γ′′, f : τ ′′1 → τ ′′2 , x : τ ′′1 .τ

′′
2).

Then by rule Cfun, we have that fun f(x : τ ′′1).C′′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′1 → τ ′′2), which
is equivalent to (fun f(x : τ ′′1).C′′){C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′1 → τ ′′2), and so C′{C{o}} :
(∆; Γ . τ) (∆′′; Γ′′ . τ ′′1 → τ ′′2).

Case for Cccfun
Assume that C′ = f̂un f(x : τ ′′1).C′′ : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′1 ⇒ τ ′′2) and C : (∆; Γ . τ)
(∆′; Γ′ . τ ′). By induction on C′′ we get that C′′{C{o}} : (∆; Γ . τ) (∆; f : τ ′′1 → τ ′′2 , x : τ ′′1 . τ

′′
2).

Then by rule Ccclam, we have that f̂un f(x : τ ′′1).C′′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′1 ⇒ τ ′′2),
which is equivalent to (f̂un f(x : τ ′′1).C′′){C{o}} : (∆; Γ.τ) (∆′′; Γ′′ .τ ′′1 ⇒ τ ′′2), and so C′{C{o}} :
(∆; Γ . τ) (∆′′; Γ′′ . τ ′′1 ⇒ τ ′′2).

10

Case for Capp1

Assume that C′ = C′′ e : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′2) and C : (∆; Γ . τ) (∆′; Γ′ . τ ′). By induction
on C′′ we get that C′′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′1 → τ ′′2). Since we know that ∆′′; Γ′′ ` e : τ ′′1 ,
by rule Capp1, we have that C′′{C{o}} e : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′2), which is equivalent to
(C′′ e){C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′2), and thus C′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′2).

Case for Capp2

Assume that C′ = e C′′ : (∆′; Γ′ .τ ′) (∆′′; Γ′′ .τ ′′2) and C : (∆; Γ.τ) (∆′; Γ′′ .τ ′). By induction
on C′′ we get that C′′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′1). Since we know that ∆′′; Γ′′ ` e : τ ′′1 → τ ′′2 ,
by rule Capp2, we have that e C′′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′2), which is equivalent to
(e C′′){C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′2), and thus C′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ ′′2)

Case for Cccapp1

Essentially the same as Capp1.

Case for Cccapp2

Essentially the same as Capp2.

Case for Cpair1

Assume that C′ = 〈C′′, e2〉 : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ1 × τ2) and C : (∆; Γ . τ) (∆′; Γ′ . τ ′).
By induction on C′′ we get that C′′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ1). Then by Cpair1 we have
that 〈C′′{C{o}}, e1〉 : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ1 × τ2), which is equivalent to 〈C′′, e2〉{C{o}} :
(∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ1 × τ2), and thus C′{C{o}} : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ1 × τ2).

Case for Cpair2

Similar to the case for Cpair1.

Case for Cproj
Assume that C′ = πiC′′ : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τi) and C : (∆; Γ . τ) (∆′; Γ′ . τ ′). By induction
on C′′ we get that C′′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . τ1 × τ2). Then by Cproj we have that
πi(C′′{C{o}}) : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τi), which is equivalent to (πiC′′){C{o}} : (∆′; Γ′ . τ ′)
(∆′′; Γ′′ . τi), and thus C′{C{o}} : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τi).

Case for Ctlam
Assume that C′ = Λα.C′′ : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . ∀α.τ ′′) and C : (∆; Γ . τ) (∆′; Γ′ . τ ′).
By induction on C′′ we get that C′′{C{o}} : (∆; Γ . τ) (∆′′, α; Γ′′ . τ ′′). Then by Ctlam we
have that Λα.(C′′{C{o}}) : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . ∀α.τ ′′), which is equivalent to (Λα.C′′){C{o}} :
(∆′; Γ′ . τ ′) (∆′′; Γ′′ . ∀α.τ ′′), and thus C′{C{o}} : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . ∀α.τ ′′).

Case for Ctapp
Assume that C′ = C′′[τ1] : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′) and C : (∆; Γ . τ) (∆′; Γ′ . τ ′). By
induction on C′′ we get that C′′{C{o}} : (∆; Γ. τ) (∆′′; Γ′′ .∀α.τ ′′). Then by Ctapp we have that
(C′′{C{o}})[τ1] : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′), which is equivalent to (C′′[τ1]){C{o}} : (∆′; Γ′ . τ ′)
(∆′′; Γ′′ . τ ′′), and thus C′{C{o}} : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′).

Case for Cpack
Assume that C′ = pack[τ1, C′′] as∃α.τ ′′ : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . ∃α.τ ′′) and C : (∆; Γ . τ)
(∆′; Γ′ . τ ′). By induction on C′′ we get that C′′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . [τ1/α]τ ′′). Then
by Cpack we have that pack[τ1, C′′{C{o}}] as ∃α.τ ′′ : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . ∃α.τ ′′), which is

11

equivalent to (pack[τ1, C′′] as ∃α.τ ′′){C{o}} : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . ∃α.τ ′′), and thus C′{C{o}} :
(∆′; Γ′ . τ ′) (∆′′; Γ′′ . ∃α.τ ′′).

Case for Cunpack1

Assume that C′ = unpack[α, x] = C′′ in e : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′) and C : (∆; Γ . τ)
(∆′; Γ′ . τ ′). By induction on C′′ we get that C′′{C{o}} : (∆; Γ . τ) (∆′′; Γ′′ . ∃α.τ1). Then by
Cunpack1 we have that unpack[α, x] = (C′′{C{o}}) in e : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′), which is
equivalent to (unpack[α, x] = C′′ in e){C{o}} : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′), and thus C′{C{o}} :
(∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′).

Case for Cunpack2

Assume that C′ = unpack[α, x] = e in C′′ : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′) and C : (∆; Γ . τ)
(∆′; Γ′ . τ ′). By induction on C′′ we get that C′′{C{o}} : (∆; Γ . τ) (∆′′, α; Γ′′, x : τ1 . τ2).
Then by Cunpack2 we have that unpack[α, x] = e in(C′′{C{o}}) : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′),
which is equivalent to (unpack[α, x] = e in C′′){C{o}} : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′), and thus
C′{C{o}} : (∆′; Γ′ . τ ′) (∆′′; Γ′′ . τ ′′).

12

5 Contextual Equivalence

5.1 Definitions

Definition A complete program e is the Kleene approximation of a complete program e′, written
e . e′, iff e ↓ ⇒ e′ ↓.

Definition Two complete programs, e and e′, are Kleene equal, e ' e′, iff e ↓ ⇔ e′ ↓. Equivalently,
if e . e′ and e′ . e.

Clearly Kleene equivalence is reflexive, symmetric, and transitive and is thus an equivalence relation.

Definition Suppose that ∆; Γ ` e : τ and ∆; Γ ` e′ : τ are two expressions of the same type.
Then e contextually approximates e′, written ∆; Γ ` e ≤ e′ : τ , iff C{e} . C{e′} for every program
context C : (∆; Γ . τ) (· . int). As a shorthand we just write e ≤τ e′ if · ` e : τ and · ` e′ : τ .

Clearly this is transitive and reflexive.

Definition Suppose that ∆; Γ ` e : τ and ∆; Γ ` e′ : τ are two expressions of the same type. Two
such expressions are contextually equivalent, written ∆; Γ ` e ∼= e′ : τ , iff C{e} ' C{e′} for every
program context C : (∆; Γ . τ) (· . int). Equivalently, if ∆; Γ ` e ≤ e′ : τ and ∆; Γ ` e′ ≤ e : τ .
As a shorthand we just write e ∼=τ e

′ if · ` e : τ and · ` e′ : τ .

Definition A family of equivalence relations is a congruence iff it is preserved by all contexts. Or
equivalently, if ∆; Γ ` e E e′ : τ , then ∆′; Γ′ ` C{e} E C{e′} : τ ′ for all contexts C : (∆; Γ . τ)
(∆′; Γ′ . τ ′).

Definition A family of equivalence relations is consistent iff · ` e E e : int implies e ' e′.

Clearly contextual equivalence is both a congruence and consistent.

Definition A closing substitution γ for the context Γ = x1 : τ1, ..., xn : τn is a finite function that
assigns the closed expressions e1 : τ1, ..., en : τn to x1, ..., xn, respectively. We write γ̂(e) for the
substitution [e1/x1]...[en/xn]e, and write γ : Γ to mean that if x : τ occurs in Γ, then there exists
a closed expression e : τ such that γ(x) = e. We write γ ∼=Γ γ

′, where γ : Γ and γ′ : Γ, to say that
γ(x) ∼=Γ(x) γ

′(x).

Lemma 5.1. If e ∼=τ e
′, then e ' e′.

Proof. Define the context C = (λx : τ.0) o, where 0 is the integer zero. Clearly C : (·.τ) (·.int).
Since we know by assumption that e ∼=τ e

′ : τ , by definition we get that C{e} ' C{e′}, which is
equivalent to

(λx : τ.0) e ' (λx : τ.0) e′

Suppose that e does not terminate. Then clearly (λx : τ.0) e does not terminate either, by rule
Eapp1. Thus by the above, (λx : τ.0) e′ does not terminate. Then it must be the case that e′ does
not terminate, as otherwise (λx : τ.0) e′ ↓, and we know that it does not.

Suppose that e ↓. Then clearly also (λx : τ.0) e ↓. Again by the above, this means that (λx :
τ.0) e′ ↓. Finally, by rule Eapp1, it is clear that e ↓, as otherwise (λx : τ.0) e′ would not terminate.
Therefore we have that e ' e′, as desired.

13

Corollary 5.2. If e ∼=τ e
′, then C{e} ' C{e′} for all C : (· . τ) (· . τ ′).

Lemma 5.3. If ∆, α; Γ ` e ∼= e′ : τ and τ ′ type, then ∆; [τ ′/α]Γ ` [τ ′/α]e ∼= [τ ′/α]e′ : [τ ′/α]τ .

Proof. Let C : (∆; [τ ′/α]Γ . [τ ′/α]τ) (· . int) be a program context. We need to show that

C{[τ ′/α]e} ' C{[τ ′/α]e′}

Since C is closed, this is equivalent to

[τ ′/α]C{e} ' [τ ′/α]C{e′}

Now define that context C′ = (Λα.C{o})[τ ′] : (∆, α; Γ.τ) (·.int). By assumption we know that
C′{e} ' C′{e′}. However, C′{e} ' [τ ′/α]C{e} and C′{e′} ' [τ ′/α]C{e′}, so therefore C{[τ ′/α]e} '
C{[τ ′/α]e′} as desired.

Lemma 5.4. If ·; Γ ` e ∼= e′ : τ and γ : Γ, then γ̂(e) ∼=τ γ̂(e′). Also, if γ ∼=Γ γ
′, then γ̂(e) ∼=τ γ̂

′(e)
and γ̂(e′) ∼=τ γ̂

′(e′), as well as γ̂(e) ∼=τ γ̂
′(e′)

Proof. Let C : (· . τ) (· . int). Since · ` γ̂(e) : τ and · ` γ̂(e′) : τ , we are to show that
C{γ̂(e)} ' C{γ̂(e′)}. Define C1 to be the context

(λx1 : τ1....λxn : τn.o) (e1) ... (en)

where Γ = x1 : τ1, ..., xn : τn and γ(x1) = e1, ..., γ(xn) = en. Clearly C1 : (Γ.τ) (·.τ). Define the
context D to be C{C1{o}}. By Lemma 4.1, D : (Γ . τ) (· . int). Therefore, since Γ ` e ∼= e′ : τ ,
we know that D{e} ' D{e′}. But by construction, D{e} ' C{γ̂(e)} and D{e′} ' C{γ̂(e′)}, so
C{γ̂(e)} ' C{γ̂(e′)}. Since C is arbitrary, we have that γ̂(e) ∼= γ̂(e′).

Now, define C′1 to be the context

(λx1 : τ1....λxn : τn.o) (e′1) ... (e′n)

where γ′(x1) = e′1, ..., γ
′(xn) = e′n. Defining D′ to be C{C′1{o}}, by the same reasoning as above

we can get that D′{e} ' D′{e′} as well as γ̂′(e) ∼= γ̂′(e′). Assuming that γ ∼=Γ γ′, we have
by congruence that D{e} ∼=int D′{e} and D{e′} ∼=int D′{e′}. By the definition of contextual
equivalence and applying the identity context, we have that D{e} ' D′{e} and D{e′} ' D′{e′}.
By the same logic as above, we can show that γ̂(e) ∼=τ γ̂

′(e) and γ̂(e′) ∼=τ γ̂
′(e′), as desired. Since

we also know that D′{e} ' D′{e′} as mentioned above, by transitivity of Kleene equality and using
the fact that D{e} ' D′{e}, we get that D{e} ' D′{e′}. This implies that γ̂(e) ∼=τ γ̂

′(e′) by the
same reasoning as above, as desired.

Lemma 5.5. If ∆; Γ ` e ≤ e′ : τ and C : (∆; Γ . τ) (∆′; Γ′ . τ ′), then ∆′; Γ′ ` C{e} ≤ C{e′} : τ ′.

Proof. Let C′ : (∆′; Γ′ . τ ′) (· . int) be an arbitrary context and C be defined as above. Define
a new context C′′ = C′{C{o}} : (∆; Γ . τ) (· . int) by Lemma 4.1. Then, since ∆; Γ ` e ≤ e′ : τ ,
we know that C′′{e} . C′′{e′}, or equivalently, C′{C{e}} . C′{C{e′}}. But since C′ was arbitrary,
we have that ∆′; Γ′ ` C{e} ≤ C{e′} : τ ′, as desired.

Corollary 5.6. If Γ ` e ∼= e′ : τ and C : (Γ . τ) (∆′; Γ′ . τ ′), then ∆′; Γ′ ` C{e} ∼= C{e′} : τ ′.

Lemma 5.7. (Unproven Assumption) If ∆; Γ ` e : τ and e 7→ e′, then ∆; Γ ` e ∼= e′ : τ .

14

5.2 Substitutivity

Lemma 5.8. If ∆; Γ ` e1 ≤ e2 : τ ′ and ∆; Γ, x : τ ′ ` e : τ , then ∆; Γ ` [e1/x]e ≤ [e2/x]e : τ .

Proof. By induction on the structure of e.

Case for e = ()

If e = (), then we just need to show ∆; Γ ` [e1/x]() ≤ [e2/x]() : unit, which is equivalent to
∆; Γ ` () ≤ () : unit, which is trivially true.

Case for e = x
If e = x, then we just need to show ∆; Γ ` [e1/x]x ≤ [e2/x]x : τ , which is equivalent to ∆; Γ ` e1 ≤
e2 : τ , which we already know by assumption (and since τ = τ ′ in this case).

Case for e = n
If e = n, then we just need to show ∆; Γ ` [e1/x]n ≤ [e2/x]n : int, which is equivalent to
∆; Γ ` n ≤ n : int, which is trivially true.

Case for e = e′1 p e
′
2

If e = e′1 p e
′
2, then we just need to show ∆; Γ ` [e1/x](e′1 p e

′
2) ≤ [e2/x](e′1 p e

′
2) : int, which is

equivalent to
∆; Γ ` ([e1/x]e′1) p([e1/x]e′2) ≤ ([e2/x]e′1) p([e2/x]e′2) : int

By induction, we get that ∆; Γ ` [e1/x]e′1 ≤ [e2/x]e′1 : int and ∆; Γ ` [e1/x]e′2 ≤ [e2/x]e′2 : int.
If we define the context C1 = o p([e1/x]e′2), then we can apply Corollary 5.6 to ∆; Γ ` [e1/x]e′1 ≤
[e2/x]e′1 : int and get that

∆; Γ ` ([e1/x]e′1) p([e1/x]e′2) ≤ ([e2/x]e′1) p([e1/x]e′2) : int

Similarly, define C2 = ([e2/x]e′1) p o and apply Corollary 5.6 to ∆; Γ ` [e1/x]e′2 ≤ [e2/x]e′2 : int to
get that

∆; Γ ` ([e2/x]e′1) p([e1/x]e′2) ≤ ([e2/x]e′1) p([e2/x]e′2) : int

Finally, by transitivity, we get the desired result

∆; Γ ` ([e1/x]e′1) p([e1/x]e′2) ≤ ([e2/x]e′1) p([e2/x]e′2) : int

Case for e = ifz(e′1, e
′
2, e
′
3)

If e = ifz(e′1, e
′
2, e
′
3), then we just need to show ∆; Γ ` [e1/x]ifz(e′1, e

′
2, e
′
3) ≤ [e2/x]ifz(e′1, e

′
2, e
′
3) :

τ , which is equivalent to

∆; Γ ` ifz([e1/x]e′1, [e1/x]e′2, [e1/x]e′3) ≤ ifz([e2/x]e′1, [e2/x]e′2, [e2/x]e′3) : τ

By induction on the subterms, we get that ∆; Γ ` [e1/x]e′1 ≤ [e2/x]e′1 : int, ∆; Γ ` [e1/x]e′2 ≤
[e2/x]e′2 : τ , and ∆; Γ ` [e1/x]e′3 ≤ [e2/x]e′3 : τ . Define the context C1 = ifz(o, [e1/x]e′2, [e1/x]e′3).
Applying Corollary 5.6 to ∆; Γ ` [e1/x]e′1 ≤ [e2/x]e′1 : int, we get that

∆; Γ ` ifz([e1/x]e′1, [e1/x]e′2, [e1/x]e′3) ≤ ifz([e2/x]e′1, [e1/x]e′2, [e1/x]e′3) : τ

Again using Corollary 5.6 but on ∆; Γ ` [e1/x]e′2 ≤ [e2/x]e′2 : int and the context
C2 = ifz([e2/x]e′1, o, [e1/x]e′3), we get that

∆; Γ ` ifz([e2/x]e′1, [e1/x]e′2, [e1/x]e′3) ≤ ifz([e2/x]e′1, [e2/x]e′2, [e1/x]e′3) : τ

15

Finally, applying Corollary 5.6 to ∆; Γ ` [e1/x]e′3 ≤ [e2/x]e′3 : int and the context
C3 = ifz([e2/x]e′1, [e2/x]e′2, o), we get

∆; Γ ` ifz([e2/x]e′1, [e2/x]e′2, [e1/x]e′3) ≤ ifz([e2/x]e′1, [e2/x]e′2, [e2/x]e′3) : τ

Then using the transitivity of contextual equivalence, we get that

∆; Γ ` ifz([e1/x]e′1, [e1/x]e′2, [e1/x]e′3) ≤ ifz([e2/x]e′1, [e2/x]e′2, [e2/x]e′3) : τ

Case for e = fun f(y : τ ′).e′

If e = fun f(y : τ ′).e′, then we just need to show

∆; Γ ` [e1/x](fun f(y : τ ′).e′) ≤ [e2/x](fun f(y : τ ′).e′) : τ ′ → τ

which is equivalent to ∆; Γ ` fun f(y : τ ′).[e1/x]e′ ≤ fun f(y : τ ′).[e2/x]e′ : τ ′ → τ . By induction
we know that ∆; Γ, f : τ ′ → τ, y : τ ′ ` [e1/x]e′ ≤ [e1/x]e′ : τ , so we can apply Corollary 5.6 to this
with the context C = fun f(y : τ ′).o : (∆; Γ, f : τ ′ → τ, y : τ ′ . τ) (∆; Γ . τ ′ → τ) to get that

∆; Γ ` fun f(y : τ ′).[e1/x]e′ ≤ fun f(y : τ ′).[e2/x]e′ : τ ′ → τ

Case for e = e′1 e
′
2

If e = e′1 e
′
2, then we just need to show

∆; Γ ` [e1/x](e′1 e
′
2) ≤ [e2/x](e′1 e

′
2) : τ

which is equivalent to

∆; Γ ` ([e1/x]e′1) ([e1/x]e′2) ≤ ([e2/x]e′1) ([e2/x]e′2) : τ

By induction we get that ∆; Γ ` [e1/x]e′1 ≤ [e2/x]e′1 : τ ′ → τ and ∆; Γ ` [e1/x]e′2 ≤ [e2/x]e′2 : τ ′.
Applying Corollary 5.6 to ∆; Γ ` [e1/x]e′1 ≤ [e2/x]e′1 : τ ′ → τ the context C1 = o ([e1/x]e′2), we get
that

∆; Γ ` ([e1/x]e′1) ([e1/x]e′2) ≤ ([e2/x]e′1) ([e1/x]e′2) : τ

Similarly, applying Corollary 5.6 to [e1/x]e′2 ≤ [e2/x]e′2 : τ ′ and the context C2 = ([e2/x]e′1) o, we
get that

∆; Γ ` ([e2/x]e′1) ([e1/x]e′2) ≤ τ([e2/x]e′1) ([e2/x]e′2) : τ

Thus by transitivity, we have the desired result:

∆; Γ ` ([e1/x]e′1) ([e1/x]e′2) ≤ ([e2/x]e′1) ([e2/x]e′2) : τ

Case for e = f̂un f(y : τ).e′

If e = f̂un f(y : τ ′).e′, then we just need to show

∆; Γ ` [e1/x](f̂un f(y : τ ′).e′) ≤ [e2/x](f̂un f(y : τ ′).e′) : τ ′ ⇒ τ

However, since this is a closed function, we know that this is equivalent to

∆; Γ ` f̂un f(y : τ ′).e′ ≤ f̂un f(y : τ ′).e′ : τ ′ ⇒ τ

which we already know by reflexivity.

16

Case for e = e′1̂e′2
If e = e′1̂e′2, then we just need to show

∆; Γ ` [e1/x](e′1̂e′2) ≤ [e2/x](e′1̂e′2) : τ

which is equivalent to

∆; Γ ` ([e1/x]e′1)̂([e1/x]e′2) ≤ ([e2/x]e′1)̂([e2/x]e′2) : τ

By induction we get that ∆; Γ ` [e1/x]e′1 ≤ [e2/x]e′1 : τ ′ ⇒ τ and ∆; Γ ` [e1/x]e′2 ≤ [e2/x]e′2 : τ ′.
Applying Corollary 5.6 to ∆; Γ ` [e1/x]e′1 ≤ [e2/x]e′1 : τ ′ ⇒ τ the context C1 = ô([e1/x]e′2), we get
that

∆; Γ ` ([e1/x]e′1)̂([e1/x]e′2) ≤ ([e2/x]e′1)̂([e1/x]e′2) : τ

Similarly, applying Corollary 5.6 to ∆; Γ ` [e1/x]e′2 ≤ [e2/x]e′2 : τ ′ and the context
C2 = ([e2/x]e′1)̂o, we get that

∆; Γ ` ([e2/x]e′1)̂([e1/x]e′2) ≤ ([e2/x]e′1)̂([e2/x]e′2) : τ

Thus by transitivity, we have the desired result:

∆; Γ ` ([e1/x]e′1)̂([e1/x]e′2) ≤ ([e2/x]e′1)̂([e2/x]e′2) : τ

Case for e = 〈e′1, e′2〉
If e = 〈e′1, e′2〉, then we just need to show

∆; Γ ` [e1/x]〈e′1, e′2〉 ≤ [e2/x]〈e′1, e′2〉 : τ1 × τ2

which is equivalent to

∆; Γ ` 〈[e1/x]e′1, [e1/x]e′2〉 ≤ 〈[e2/x]e′1, [e2/x]e′2〉 : τ1 × τ2

By induction we get that ∆; Γ ` [e1/x]e′1 ≤ [e2/x]e′1 : τ1 and ∆; Γ ` [e1/x]e′2 ≤ [e2/x]e′2 : τ2.
Applying Corollary 5.6 to ∆; Γ ` [e1/x]e′1 ≤ [e2/x]e′1 : τ1 the context C1 = 〈o, [e1/x]e′2〉, we get that

∆; Γ ` 〈[e1/x]e′1, [e1/x]e′2〉 ≤ 〈[e2/x]e′1, [e1/x]e′2〉 : τ1 × τ2

Similarly, applying Corollary 5.6 to ∆; Γ ` [e1/x]e′2 ≤ [e2/x]e′2 : τ2 and the context
C2 = 〈[e2/x]e′1, o〉, we get that

∆; Γ ` 〈[e2/x]e′1, [e1/x]e′2〉 ≤ 〈[e2/x]e′1, [e2/x]e′2〉 : τ1 × τ2

Thus by transitivity, we have the desired result:

∆; Γ ` 〈[e1/x]e′1, [e1/x]e′2〉 ≤ 〈[e2/x]e′1, [e2/x]e′2〉 : τ1 × τ2

Case for e = πie
′

If e = πie
′, then we just need to show

∆; Γ ` [e1/x]πie
′ ≤ [e2/x]πie

′ : τi

which is equivalent to
∆; Γ ` πi([e1/x]e′) ≤ πi([e2/x]e′) : τi

By induction we get that [e1/x]e′1 ≤ [e2/x]e′1 : τ1 × τ2. Applying Corollary 5.6 to this with the
context C = πio, we get the desired result

∆; Γ ` πi([e1/x]e′) ≤ πi([e2/x]e′) : τi

17

Case for e = Λα.e′

If e = Λα.e′, then we just need to show

∆; Γ ` [e1/x]Λα.e′ ≤ [e2/x]Λα.e′ : ∀α.τ ′

which is equivalent to
∆; Γ ` Λα.[e1/x]e′ ≤ Λα.[e2/x]e′ : ∀α.τ ′

since neither e1 nor e2 depend on α. By induction we get that ∆, α; Γ ` [e1/x]e′ ≤ [e2/x]e′ : τ ′.
Applying Corollary 5.6 to this with the context C = Λα.o, we get the desired result

∆; Γ ` [e1/x]Λα.e′ ≤ [e2/x]Λα.e′ : ∀α.τ ′

Case for e = e′[τ ′]
If e = e′[τ ′], then we just need to show

∆; Γ ` [e1/x](e′[τ ′]) ≤ [e2/x](e′[τ ′]) : [τ ′/α]τ

which is equivalent to
∆; Γ ` ([e1/x]e′)[τ ′] ≤ ([e2/x]e′)[τ ′] : [τ ′/α]τ

By induction we get that ∆; Γ ` [e1/x]e′ ≤ [e2/x]e′ : ∀α.τ . Applying Corollary 5.6 to this with the
context C = o[τ ′], we get the desired result

∆; Γ ` ([e1/x]e′)[τ ′] ≤ ([e2/x]e′)[τ ′] : [τ ′/α]τ

Case for e = pack[τ ′, e′] as∃α.τ
If e = pack[τ ′, e′] as∃α.τ , then we just need to show that

∆; Γ ` [e1/x](pack[τ ′, e′] as ∃α.τ) ≤ [e2/x](pack[τ ′, e′] as ∃α.τ) : ∃ατ

which is equivalent to

∆; Γ ` pack[τ ′, [e1/x]e′] as∃α.τ ≤ pack[τ ′, [e2/x]e′] as∃α.τ : ∃ατ

By induction we get that ∆; Γ ` [e1/x]e′ ≤ [e2/x]e′ : [τ ′/α]τ . Applying Corollary 5.6 to this with
the context C = pack[τ ′, o] as ∃α.τ , we get the desired result

∆; Γ ` pack[τ ′, [e1/x]e′] as∃α.τ ≤ pack[τ ′, [e2/x]e′] as∃α.τ : ∃ατ

Case for e = unpack[α, y] = e′1 in e
′
2

If e = unpack[α, y] = e′1 in e
′
2, then we need to show that

∆; Γ ` [e1/x](unpack[α, y] = e′1 in e
′
2) ≤ [e2/x](unpack[α, y] = e′1 in e

′
2) : τ2

which is equivalent to

∆; Γ ` unpack[α, y] = [e1/x]e′1 in[e1/x]e′2 ≤ unpack[α, y] = [e2/x]e′1 in[e2/x]e′2 : τ2

By induction we get that ∆; Γ ` [e1/x]e′1 ≤ [e2/x]e′1 : ∃α.τ1 and ∆, α; Γ, x : τ1 ` [e1/x]e′2 ≤ [e2/x]e′2 :
τ2. Applying Corollary 5.6 to the first of these with the context C = (unpack[α, y] = o in[e1/x]e′2),
we get that

∆; Γ ` unpack[α, y] = [e1/x]e′1 in[e1/x]e′2 ≤ unpack[α, y] = [e2/x]e′1 in[e1/x]e′2 : τ2

Applying Corollary 5.6 to the second inductive result with the context
C = (unpack[α, y] = [e2/x]e′1 in o), we get that

∆; Γ ` unpack[α, y] = [e2/x]e′1 in[e1/x]e′2 ≤ unpack[α, y] = [e2/x]e′1 in[e2/x]e′2 : τ2

The desired result then follows from the above two results by transitivity.

18

Corollary 5.9. If ∆; Γ ` e1
∼= e2 : τ ′ and ∆; Γ, x : τ ′ ` e : τ , then ∆; Γ ` [e1/x]e ∼= [e2/x]e : τ .

19

6 Compactness

Definition Define the “unwindings” of a recursive function f = fun g(x : τ).e as

fun0 g(x : τ).e = fun g(x : τ).⊥

funi+1 g(x : τ).e = fun g(x : τ).[funi g(x : τ).e/g]e

As a shorthand, we write f i = funi g(x : τ).e and fw = f .

Similarly, define the “unwindings” of a recursive closure-converted function f = f̂un g(x : τ).e as

f̂un
0
g(x : τ).e = f̂un g(x : τ).⊥

f̂un
i+1

g(x : τ).e = f̂un g(x : τ).[f̂un
i
g(x : τ).e/g]e

As a shorthand, we write f i = f̂un
i
g(x : τ).e and fw = f .

Clearly in either case f0 diverges by definition, and f i behaves as a function that can only be called
i times before looping forever. Note that when using f , unless specified, it could be referring to
either type of function.

Also, as another shorthand, we write ef [o] = [fo/w]e for some · ` f : τ → τ ′ and w : τ → τ ′ ` e,
where o can be filled by w or any i.

Lemma 6.1. (Unproven Assumption) For all Γ ` e : τ , Γ ` ⊥ ≤ e : τ for some ⊥ such that
Γ ` ⊥ : τ .

Lemma 6.2. For a given function f = fun g(x : τ ′).e or f = f̂un g(x : τ ′).e and all i, j such that
0 ≤ i ≤ j, f i ≤τ f j .

Proof. We proceed by induction to first show that for all 0 ≤ i, f i ≤τ f i+1.

Case for i = 0
Suppose that f = fun g(x : τ ′).e, with · ` f : τ ′ → τ . By their definitions, we know that
f0 = fun g(x : τ ′).⊥ and f1 = fun g(x : τ ′).[fun g(x : τ ′).⊥/g]e. By Lemma 6.1 we know
that

g : τ ′ → τ, x : τ ′ ` ⊥ ≤ [fun g(x : τ ′).⊥/g]e : τ

Then using the context C = fun g(x : τ ′).o, where C : (g : τ ′ → τ, x : τ ′ . τ) (· . τ ′ → τ),
we can apply Lemma 5.5 to get that

C{⊥} ≤τ ′→τ C{[fun g(x : τ ′).⊥/g]e}

which is equivalent to

fun g(x : τ ′).⊥ ≤τ ′→τ fun g(x : τ ′).[fun g(x : τ ′).⊥/g]e

which is the same as f0 ≤τ ′→τ f1 and is what we wanted to show.

The other possibility is that f = f̂un g(x : τ ′).e, with · ` f : τ ′ ⇒ τ . By their definitions, we
know that f0 = f̂un g(x : τ ′).⊥ and f1 = f̂un g(x : τ ′).[f̂un g(x : τ ′).⊥/g]e. By Lemma 6.1
we know that

g : τ ′ ⇒ τ, x : τ ′ ` ⊥ ≤ [f̂un g(x : τ ′).⊥/g]e : τ

20

Then using the context C = f̂un g(x : τ ′).o, where C : (g : τ ′ ⇒ τ, x : τ ′ . τ) (· . τ ′ ⇒ τ),
we can apply Lemma 5.5 to get that

C{⊥} ≤τ ′⇒τ C{[f̂un g(x : τ ′).⊥/g]e}

which is equivalent to

f̂un g(x : τ ′).⊥ ≤τ ′⇒τ f̂un g(x : τ ′).[f̂un g(x : τ ′).⊥/g]e

which is the same as f0 ≤τ ′⇒τ f1 and is what we wanted to show.

Case for i > 0
We want to show that f i ≤τ f i+1. There are two cases to consider.

If f = fun g(x : τ).e, then clearly by definition f i = λx : τ ′.[f i−1/f]e and similarly f i+1 =
λx : τ ′.[f i/f]e. By induction we know that f i−1 ≤τ f i, so by Lemma 5.8 we get that
[f i−1/f]e ≤τ [f i/f]e. Then using the context C = λx : τ ′.o, we can apply Lemma 5.5 to get
that

λx : τ ′.[f i−1/f]e ≤τ λx : τ ′.[f i/f]e

and thus we have the desired result, that f i ≤τ f i+1.

If f = f̂un g(x : τ).e, then clearly by definition f i = λ̂x : τ ′.[f i−1/f]e and similarly f i+1 =
λ̂x : τ ′.[f i/f]e. By induction we know that f i−1 ≤τ f i, so by Lemma 5.8 we get that
[f i−1/f]e ≤τ [f i/f]e. Then using the context C = λ̂x : τ ′.o, we can apply Lemma 5.5 to get
that

λ̂x : τ ′.[f i−1/f]e ≤τ λ̂x : τ ′.[f i/f]e

and thus we have the desired result, that f i ≤τ f i+1.

Now we want to show that for all i, j such that 0 ≤ i ≤ j, f i ≤τ f j . We proceed by induction on j.

Case for j = i
Trivially true, as f i = f j , so clearly f i ≤τ f j .

Case for j > i
By induction we get that f i ≤τ f j−1. By our proof above we know that f j−1 ≤τ f j , and so
by transitivity we know that f i ≤τ f j .

Corollary 6.3. For a given function f = fun g(x : τ ′).e or f = f̂un g(x : τ ′).e and all i ≥ 0,
f i ≤τ fw.

Lemma 6.4.

(1) f = fun g(x : τ1).e′ and w : τ1 → τ2 ` e : τ

(2) f = f̂un g(x : τ1).e′ and w : τ1 ⇒ τ2 ` e : τ

For all i, j such that 0 ≤ i ≤ j, if either (1) or (2) hold, then ef [i] ≤τ ef [j]

Proof. Follows immediately from the above Lemma 6.3 and Lemma 5.8.

21

6.1 Simulation

Lemma 6.5.

(1) f = fun g(x : τ1).e′ where · ` f : τ1 → τ2 and Γ = w : τ1 → τ2

(2) f = f̂un g(x : τ1).e′ where · ` f : τ1 ⇒ τ2 and Γ = w : τ1 ⇒ τ2

Given either (1) or (2) from above, and that Γ ` e : τ and ef [w] 7→i v (where i indicates that it
takes exactly i steps), then ∃j, v′ such that Γ ` v′ : τ , v = v′f [w], and ∀k ≥ j.ef [k] ≥ v′f [k−j]

Proof. By induction on the length of ef [w] 7→i v, with an inner induction on the structure of e.

Case for i = 0
In this case, it must be that ef [w] val. There are a few cases for this:

Case for e = w
We must consider this case because e has w unbound in it, and we are substituting a value
in for w. Thus we have that ef [w] = fw = v and so ef [k] = fk. Let j = 0 and v′ = w. There
are two cases based on the two possibilities mentioned at the beginning, (1) and (2).

If (1) is the case, then we have that v = fw = v′f [w], as desired. Also, for some k, v′f [k−j] =
v′f [k] = funk g(x : τ1).e′, as well as ef [k] = funk g(x : τ1).e′. Thus, since v′f [k−j] = ef [k],
clearly v′f [k−j] ≤τ1→τ2 ef [k] for all k, since k was arbitrary. Thus the result holds in this case.

If (2) is the case, then we have that v = fw = v′f [w], as desired. Also, letting k be arbitrary,

v′f [k−j] = v′f [k] = f̂un
k
g(x : τ1).e′, as well as ef [k] = f̂un

k
g(x : τ1).e′. Thus, since v′f [k−j] =

ef [k], clearly v′f [k−j] ≤τ1→τ2 ef [k] for all k, since k was arbitrary. Thus the result holds in this
case.

Case for e = ()

In this situation, ef [w] = () = v. Pick j = 0 and v′ = () and we get that v = () = v′f [w].
Clearly Γ ` v′ : τ . Also, for arbitrary 0 ≤ k, v′f [k−j] = () = ef [k], and thus v′f [k−j] ≤unit e

f [k].

Case for e = n
In this situation, ef [w] = n = v. Pick j = 0 and v′ = n and we get that v = n = v′f [w].
Clearly Γ ` v′ : τ . Also, for arbitrary 0 ≤ k, v′f [k−j] = n = ef [k], and thus v′f [k−j] ≤int e

f [k].

Case for e = 〈v1, v2〉
Since ef [w] 7→0 v, ef [w] = v. Pick j = 0 and v′ = e, which is a value since e val by what we
know above. We already know that Γ ` v′ : τ , and clearly ef [w] = v′f [w] = v. For j = 0 ≤ k,
since e = v′, clearly ef [k] = v′f [k] = v′f [k−j], so v′f [k−j] ≤τ ef [k].

Case for e = fun h(x : τ ′).e′

Since ef [w] 7→0 v, ef [w] = v. Pick j = 0 and v′ = e. We already know that Γ ` v′ : τ .
Suppose j = 0 ≤ k. We just need to show that v′f [k−j] ≤τ ef [k], which we know because
ef [k] = v′f [k] = v′f [k−j].

Case for e = f̂un h(x : τ ′).e′

Since ef [w] 7→0 v, ef [w] = v. Pick j = 0 and v′ = e. We already know that Γ ` v′ : τ .
Suppose j = 0 ≤ k. We just need to show that v′f [k−j] ≤τ ef [k], which we know because
ef [k] = v′f [k] = v′f [k−j].

22

Case for e = Λα.e′

Since ef [w] 7→0 v, ef [w] = v. Pick j = 0 and v′ = e. We already know that Γ ` v′ : τ .
Suppose j = 0 ≤ k. We just need to show that v′f [k−j] ≤τ ef [k], which we know because
ef [k] = v′f [k] = v′f [k−j].

Case for e = pack[τ ′, e′] as ∃α.τ
Since ef [w] 7→0 v, ef [w] = v. Pick j = 0 and v′ = e. We already know that Γ ` v′ : τ .
Suppose j = 0 ≤ k. We just need to show that v′f [k−j] ≤τ ef [k], which we know because
ef [k] = v′f [k] = v′f [k−j].

Case for i > 0

Case for e = e1 p e2

This is where ef [w] = e
f [w]
1 p e

f [w]
2 7→i v. By Tintop, we know that Γ ` e1 : int and Γ `

e2 : int. By our outer induction (on the length of the evaluation) on Γ ` e1 : int and

e
f [w]
1 7→i1 v1, since i1 < i, we get that there exist j1, v

′
1 such that Γ ` v′1 : int, v1 = v

′f [w]
1 ,

and for all j1 ≤ k, v
′f [k−j1]
1 ≤int e

f [k]
1 . Similarly, we get by induction on Γ ` e2 : int and

e
f [w]
2 7→i2 v2, we get that there exist j2, v

′
2 such that Γ ` v′2 : int, v2 = v

′f [w]
2 , and for all

j2 ≤ k, v
′f [k−j2]
2 ≤int e

f [k]
2 .

However, since v1 : int, we know v1 = n1 = v
′f [w]
1 = v′1 for some n1. Similarly, for some

n2, we get that v2 = n2 = v
′f [w]
2 = v′2. This means that for j1 ≤ k, n1 ≤int e

f [k]
1 and for

j2 ≤ k, n2 ≤int e
f [k]
2 . By Eintop3, we get that n1 pn2 7→ n, where n1 pn2 = n. Now pick

j = j1 + j2 and v′ = n. We already know that Γ ` v′ : int, since n : int. It is also clear that
v = n = v′f [w]. Suppose j ≤ k, we want to show that v′f [k−j] ≤int e

f [k]. But v′f [k−j] = n, so
we just need to show that n ≤int e

f [k].

Since n1 pn2 7→ n, by Lemma 5.7 we get that n ≤int n1 pn2. Now define the context

C2 = o pn2 : (· . int) (· . int). Then since n1 ≤int e
f [k]
1 because j1 ≤ j ≤ k, we can apply

Lemma 5.5 to get that

n1 pn2 ≤int e
f [k]
1 pn2

We can similarly apply Lemma 5.5 to the fact that n2 ≤int e
f [k]
2 since j2 ≤ j ≤ k, using the

context C1 = C{ef [k]
1 p o} : (· . int) (· . int) to get that

e
f [k]
1 pn2 ≤int e

f [k]
1 p e

f [k]
2

So by transitivity, we get that

n1 pn2 ≤int e
f [k]
1 p e

f [k]
2

which is equivalent to
(n1 pn2)f [k−j] ≤int (e1 p e2)f [k]

as desired.

Case for e = ifz(e1, e2, e3)

This is where ef [w] = ifz(e
f [w]
1 , e

f [w]
2 , e

f [w]
3) 7→i v. By Tifz, we know that Γ ` e1 : int,

Γ ` e2 : τ and Γ ` e3 : τ . By induction on the length of the evaluation, we get that for

e
f [w]
1 7→i1 v1, there exist j1, v

′
1 such that Γ ` v′1 : int, v1 = v

′f [w]
1 , and for all j1 ≤ k,

v
′f [k−j1]
1 ≤int e

f [k]
1 . Let k be such that j1 ≤ k, and define the context

C1 = ifz(o, e
f [k]
2 , e

f [k]
3) : (· . int) (· . τ)

23

Using this context to apply Lemma 5.5 to v
′f [k−j1]
1 ≤int e

f [k]
1 from above, we get that

ifz(v
′f [k−j1]
1 , e

f [k]
2 , e

f [k]
3) ≤τ ef [k]

Now, since v1 : int, we can case on its value. There are two cases that we consider: v1 = 0,
and v1 6= 0.

If v1 = 0, then we know that ifz(v1, e
f [w]
2 , e

f [w]
3) 7→ e

f [w]
2 by rule Eifz2. We can then

induct on the evaluation e
f [w]
2 7→i2 v2 = v, which tells us that there exist j2, v

′
2 such

that Γ ` v′2 : τ , v2 = v
′f [w]
2 , and for all k such that j2 ≤ k, v

′f [k−j2]
2 ≤τ ef [k]

2 .

Pick v′ = v′2 and j = j1 +j2. We already know that Γ ` v′ : τ , and since v = v2, we have

that v = v2 = v
′f [w]
2 = v′f [w]. Now suppose we have k such that j = j1+j2 ≤ k. Defining

k2 = k − j1, we know by our application of induction above that v
′f [k2−j2]
2 ≤τ ef [k2]

2 .
This is equivalent to

v
′f [k−j]
2 ≤τ ef [k−j1]

2

However, by Lemma 6.4, we know that e
f [k−j1]
2 ≤τ e

f [k]
2 , so by the transitivity of

contextual approximation we have that

v
′f [k−j]
2 ≤τ ef [k]

2

We know that v′1 = 0 since v1 = 0, so v
′f [k−j1]
1 = 0. Thus

ifz(v
′f [k−j1]
1 , e

f [k]
2 , e

f [k]
3) 7→ e

f [k]
2

and so by Lemma 5.7 we know that

e
f [k]
2 ≤τ ifz(v

′f [k−j1]
1 , e

f [k]
2 , e

f [k]
3)

Now by transitivity, since we know that

v
′f [k−j]
2 ≤τ ef [k]

2 ≤τ ifz(v
′f [k−j1]
1 , e

f [k]
2 , e

f [k]
3) ≤τ ef [k]

we therefore know that v
′f [k−j]
2 ≤τ ef [k], which is what we wanted to show.

If v1 6= 0, then we know that ifz(v1, e
f [w]
2 , e

f [w]
3) 7→ e

f [w]
3 by rule Eifz3. We can then

induct on the evaluation e
f [w]
3 7→i3 v3 = v, which tells us that there exist j3, v

′
3 such

that Γ ` v′3 : τ , v3 = v
′f [w]
3 , and for all k such that j3 ≤ k, v

′f [k−j3]
3 ≤τ ef [k]

3 .

Pick v′ = v′3 and j = j1 +j3. We already know that Γ ` v′ : τ , and since v = v3, we have

that v = v3 = v
′f [w]
3 = v′f [w]. Now suppose we have k such that j = j1+j3 ≤ k. Defining

k3 = k − j1, we know by our application of induction above that v
′f [k3−j3]
3 ≤τ ef [k3]

3 .
This is equivalent to

v
′f [k−j]
3 ≤τ ef [k−j1]

3

However, by Lemma 6.4, we know that e
f [k−j1]
3 ≤τ e

f [k]
3 , so by the transitivity of

contextual approximation we have that

v
′f [k−j]
3 ≤τ ef [k]

3

24

We know that v′1 6= 0 since v1 6= 0, so v
′f [k−j1]
1 = 0. Thus

ifz(v
′f [k−j1]
1 , e

f [k]
2 , e

f [k]
3) 7→ e

f [k]
3

and so by Lemma 5.7 we know that

e
f [k]
3 ≤τ ifz(v

′f [k−j1]
1 , e

f [k]
2 , e

f [k]
3)

Now by transitivity, since we know that

v
′f [k−j]
3 ≤τ ef [k]

3 ≤τ ifz(v
′f [k−j1]
1 , e

f [k]
2 , e

f [k]
3) ≤τ ef [k]

we therefore know that v
′f [k−j]
3 ≤τ ef [k], which is what we wanted to show.

Case for e = e1 e2

This is where ef [w] = e
f [w]
1 e

f [w]
2 7→i v. By Tapp, we know that Γ ` e1 : τ ′ → τ and

Γ ` e2 : τ ′. By our outer induction (on the length of the evaluation) on Γ ` e1 : τ ′ → τ and

e
f [w]
1 7→i1 v1, since i1 < i, we get that there exist j1, v

′
1 such that Γ ` v′1 : τ ′ → τ , v1 = v

′f [w]
1 ,

and for all j1 ≤ k, v
′f [k−j1]
1 ≤τ→τ ′ e

f [k]
1 . Similarly, we get by induction on Γ ` e2 : τ ′ and

e
f [w]
2 7→i2 v2, we get that there exist j2, v

′
2 such that Γ ` v′2 : τ ′, v2 = v

′f [w]
2 , and for all j2 ≤ k,

v
′f [k−j2]
2 ≤τ ′ e

f [k]
2 .

We know that Γ ` v′1 : τ ′ → τ and Γ ` v′2 : τ ′, so we can apply Tapp to get that Γ ` v′1 v′2 : τ .

Now it would be nice if we could apply induction again to v′1 v
′
2, however we can’t, since it’s

possible for both j1 = 0 and j2 = 0, which means the evaluation isn’t actually any smaller.
However, we still need to show something similar, and for this we will consider two subcases,
making use of an arbitrary k in them:

Consider the case where v′1 = fun h(x : τ ′).e′. Then (v′1 v
′
2)f [k] 7→ ([v′1/h][v′2/x]e′)f [k].

Now we can apply the outer inductive hypothesis on ([v′1/h][v′2/x]e′)f [w] 7→j3 v3, which

tells us that there exist j3, v
′
3 such that Γ ` v′3 : τ , v3 = v

′f [w]
3 , and for all j3 ≤ k,

v
′f [k−j3]
3 ≤τ ([v′1/h][v′2/x]e′)f [k]. However for j3 ≤ k, since

(v′1 v
′
2)f [k] 7→ ([v′1/h][v′2/x]e′)f [k], by Lemma 5.7 ([v′1/h][v′2/x]e′)f [k] ≤τ (v′1 v

′
2)f [k], and

thus by transitivity

v
′f [k−j3]
3 ≤τ (v′1 v

′
2)f [k]

The other possible case is where v′1 = w, if situation (1) is true. Then v
′f [k]
1 = funk g(x :

τ ′).e′. We can then use our outer inductive hypothesis on ([w/g][v′2/x]e′)f [w] 7→ v3 to

get that there exist j′3, v
′
3 such that Γ ` v′3 : τ , v3 = v

′f [w]
3 , and for all j′3 ≤ k,

v
′f [k−j′3]
3 ≤τ ([w/g][v′2/x]e′)f [k]. Letting j′3 ≤ k, we know that ([w/g][v′2/x]e′)f [k] =

[wf [k]/g][v
′f [k]
2 /x]e′ since e′ does not have w bound in it. This is equivalent to

[fk/g][v
′f [k]
2 /x]e′, and we know that

(funk+1 g(x : τ ′).e′) v
′f [k]
2 7→ [fk/g][v

′f [k]
2 /x]e′

and equivalently

v
′f [k+1]
1 v

′f [k]
2 7→ [fk/g][v

′f [k]
2 /x]e′

so clearly by Lemma 5.7,

[fk/g][v
′f [k]
2 /x]e′ ≤τ v′f [k+1]

1 v
′f [k]
2

25

By transitivity, we then get that v
′f [k−j′3]
3 ≤τ v′f [k+1]

1 v
′f [k]
2 . Since v

′f [k]
2 ≤τ ′ v

′f [k+1]
2 by

Lemma 6.4, we can apply Lemma 5.5 with the context C3 = v
′f [k+1]
1 ̂o : (· . τ ′ ⇒ τ)

(· . int) to get that

v
′f [k+1]
1 v

′f [k]
2 ≤τ v′f [k+1]

1 v
′f [k+1]
2

Therefore, by applying transitivity once again, we get that

v
′f [k−j′3]
3 ≤τ v′f [k+1]

1 v
′f [k+1]
2

If we then define j3 = j′3 + 1, since k was arbitrary we get that for all j3 ≤ k,

v
′f [k−j3]
3 ≤τ (v′1 v

′
2)f [k]

Now in either of the above cases, we have shown that for all k greater than the corresponding
j3 for the case,

v
′f [k−j3]
3 ≤τ (v′1 v

′
2)f [k]

Pick j = j1 + j2 + j3 and v′ = v′3. We already know that Γ ` v′ : τ . Also, by the combined

evaluations above, we know that v = v3 = v
′f [w]
3 = v′f [w].

Let j ≤ k, and thus k is greater than j1, j2, j3. Define k3 = k − j1 − j2, and so j3 ≤ k3 by
definition of j. Then we know that

v
′f [k3−j3]
3 ≤τ (v′1 v

′
2)f [k3]

which is equivalent to

v
′f [k−j]
3 ≤τ (v′1)f [k−j1−j2] (v′2)f [k−j1−j2]

Now define k1 = k− j2, clearly j1 ≤ k1. Using what we know from induction as stated above,
we get that

v
′f [k1−j1]
1 ≤τ ′→τ e

f [k1]
1

which is equivalent to

v
′f [k−j1−j2]
1 ≤τ ′→τ e

f [k−j2]
1

By Lemma 6.4, we get know that e
f [k−j2]
1 ≤τ ′→τ e

f [k]
1 , so by the transitivity of contextual

approximation,

v
′f [k−j1−j2]
1 ≤τ ′→τ e

f [k]
1

Similarly defining k2 = k − j1, by induction we get that

v
′f [k2−j2]
2 ≤τ ′ e

f [k2]
2

which is equivalent to

v
′f [k−j1−j2]
2 ≤τ ′ e

f [k−j1]
2

By Lemma 6.4, we get know that e
f [k−j1]
2 ≤τ ′ e

f [k]
2 , so by transitivity,

v
′f [k−j1−j2]
2 ≤τ ′ e

f [k]
2

We can apply Lemma 5.5 to the context

C2 = o v
′f [k−j1−j2]
2 : (· . τ1 → τ2) (· . int)

26

and v
′f [k−j1−j2]
1 ≤τ ′→τ e

f [k]
1 to get that

v
′f [k−j1−j2]
1 v

′f [k−j1−j2]
2 ≤τ ef [k]

1 v
′f [k−j1−j2]
2

Similarly, we can apply Lemma 5.5 to the context

C1 = e
f [k]
1 o : (· . τ1 → τ2) (· . int)

and v
′f [k−j1−j2]
2 ≤τ ′ e

f [k]
2 to get that

e
f [k]
1 v

′f [k−j1−j2]
2 ≤τ ef [k]

1 e
f [k]
2

Then we can apply the transitivity of contextual approximation to

v
′f [k−j]
3 ≤τ v′f [k−j1−j2]

1 v
′f [k−j1−j2]
2 ≤τ ef [k]

1 v
′f [k−j1−j2]
2 ≤τ ef [k]

1 e
f [k]
2

which gets us that

v
′f [k−j]
3 ≤τ (e1 e2)f [k]

which is what we wanted to show. Since k was arbitrary, we have shown this to be true for
all j ≤ k, as desired.

Case for e = e1̂e2

This is where ef [w] = e
f [w]
1 ̂ef [w]

2 7→i v. By Tccapp, we know that Γ ` e1 : τ ′ ⇒ τ and
Γ ` e2 : τ ′. By our outer induction (on the length of the evaluation) on Γ ` e1 : τ ′ ⇒ τ and

e
f [w]
1 7→i1 v1, since i1 < i, we get that there exist j1, v

′
1 such that Γ ` v′1 : τ ′ ⇒ τ , v1 = v

′f [w]
1 ,

and for all j1 ≤ k, v
′f [k−j1]
1 ≤τ ′⇒τ e

f [k]
1 . Similarly, we get by induction on Γ ` e2 : τ ′ and

e
f [w]
2 7→i2 v2, we get that there exist j2, v

′
2 such that Γ ` v′2 : τ ′, v2 = v

′f [w]
2 , and for all j2 ≤ k,

v
′f [k−j2]
2 ≤τ ′ e

f [k]
2 .

We know that Γ ` v′1 : τ ′ ⇒ τ and Γ ` v′2 : τ ′, so we can apply Tccapp to get that
Γ ` v′1̂v′2 : τ .

Now it would be nice if we could apply induction again to v′1̂v′2, however we can’t, since it’s
possible for both j1 = 0 and j2 = 0, which means the evaluation isn’t actually any smaller.
However, we still need to show something similar, and for this we will consider two subcases,
making use of an arbitrary k in them:

Consider the case where v′1 = f̂un h(x : τ ′).e′. Then (v′1̂v′2)f [k] 7→ ([v′1/h][v′2/x]e′)f [k].
Now we can apply the outer inductive hypothesis on ([v′1/h][v′2/x]e′)f [w] 7→j3 v3, which

tells us that there exist j3, v
′
3 such that Γ ` v′3 : τ , v3 = v

′f [w]
3 , and for all j3 ≤ k,

v
′f [k−j3]
3 ≤τ ([v′1/h][v′2/x]e′)f [k]. However for j3 ≤ k, since

(v′1̂v′2)f [k] 7→ ([v′1/h][v′2/x]e′)f [k], by Lemma 5.7 ([v′1/h][v′2/x]e′)f [k] ≤τ (v′1̂v′2)f [k], and
thus by transitivity

v
′f [k−j3]
3 ≤τ (v′1̂v′2)f [k]

The other possible case is where v′1 = w, if situation (2) is true. Then v
′f [k]
1 = f̂un

k
g(x :

τ ′).e′. We can then use our outer inductive hypothesis on ([w/g][v′2/x]e′)f [w] 7→ v3 to

get that there exist j′3, v
′
3 such that Γ ` v′3 : τ , v3 = v

′f [w]
3 , and for all j′3 ≤ k,

v
′f [k−j′3]
3 ≤τ ([w/g][v′2/x]e′)f [k]. Letting j′3 ≤ k, we know that ([w/g][v′2/x]e′)f [k] =

27

[wf [k]/g][v
′f [k]
2 /x]e′ since e′ does not have w bound in it. This is equivalent to

[fk/g][v
′f [k]
2 /x]e′, and we know that

(funk+1 g(x : τ ′).e′)̂v′f [k]
2 7→ [fk/g][v

′f [k]
2 /x]e′

and equivalently

v
′f [k+1]
1 ̂v′f [k]

2 7→ [fk/g][v
′f [k]
2 /x]e′

so clearly by Lemma 5.7,

[fk/g][v
′f [k]
2 /x]e′ ≤τ v′f [k+1]

1 ̂v′f [k]
2

By transitivity, we then get that v
′f [k−j′3]
3 ≤τ v′f [k+1]

1 ̂v′f [k]
2 . Since v

′f [k]
2 ≤τ ′ v

′f [k+1]
2 by

Lemma 6.4, we can apply Lemma 5.5 with the context C3 = C{v′f [k+1]
1 ̂o} : (· . τ ′ ⇒

τ) (· . int) to get that

v
′f [k+1]
1 ̂v′f [k]

2 ≤τ v′f [k+1]
1 ̂v′f [k+1]

2

Therefore, by applying transitivity once again, we get that

v
′f [k−j′3]
3 ≤τ v′f [k+1]

1 ̂v′f [k+1]
2

If we then define j3 = j′3 + 1, since k was arbitrary we get that for all j3 ≤ k,

v
′f [k−j3]
3 ≤τ (v′1̂v′2)f [k]

Now in either of the above cases, we have shown that for all k greater than the corresponding
j3 for the case,

v
′f [k−j3]
3 ≤τ (v′1̂v′2)f [k]

Pick j = j1 + j2 + j3 and v′ = v′3. We already know that Γ ` v′ : τ . Also, by the combined

evaluations above, we know that v = v3 = v
′f [w]
3 = v′f [w].

Let j ≤ k, and thus k is greater than j1, j2, j3. Define k3 = k − j1 − j2, and so j3 ≤ k3 by
definition of j. Then we know that

v
′f [k3−j3]
3 ≤τ (v′1̂v′2)f [k3]

which is equivalent to

v
′f [k−j]
3 ≤τ (v′1)f [k−j1−j2]̂(v′2)f [k−j1−j2]

Now define k1 = k− j2, clearly j1 ≤ k1. Using what we know from induction as stated above,
we get that

v
′f [k1−j1]
1 ≤τ ′⇒τ e

f [k1]
1

which is equivalent to

v
′f [k−j1−j2]
1 ≤τ ′⇒τ e

f [k−j2]
1

By Lemma 6.4, we get know that e
f [k−j2]
1 ≤τ ′⇒τ e

f [k]
1 , so by the transitivity of contextual

approximation,

v
′f [k−j1−j2]
1 ≤τ ′⇒τ e

f [k]
1

28

Similarly defining k2 = k − j1, by induction we get that

v
′f [k2−j2]
2 ≤τ ′ e

f [k2]
2

which is equivalent to

v
′f [k−j1−j2]
2 ≤τ ′ e

f [k−j1]
2

By Lemma 6.4, we get know that e
f [k−j1]
2 ≤τ ′ e

f [k]
2 , so by transitivity,

v
′f [k−j1−j2]
2 ≤τ ′ e

f [k]
2

We can apply Lemma 5.5 to the context

C2 = ôv′f [k−j1−j2]
2 : (· . τ1 ⇒ τ2) (· . int)

and v
′f [k−j1−j2]
1 ≤τ ′⇒τ e

f [k]
1 to get that

v
′f [k−j1−j2]
1 ̂v′f [k−j1−j2]

2 ≤τ ef [k]
1 ̂v′f [k−j1−j2]

2

Similarly, we can apply Lemma 5.5 to the context

C1 = e
f [k]
1 ̂o : (· . τ1 ⇒ τ2) (· . int)

and v
′f [k−j1−j2]
2 ≤τ ′ e

f [k]
2 to get that

e
f [k]
1 ̂v′f [k−j1−j2]

2 ≤τ ef [k]
1 ̂ef [k]

2

Then we can apply the transitivity of contextual approximation to

v
′f [k−j]
3 ≤τ v′f [k−j1−j2]

1 ̂v′f [k−j1−j2]
2 ≤τ ef [k]

1 ̂v′f [k−j1−j2]
2 ≤τ ef [k]

1 ̂ef [k]
2

which gets us that

v
′f [k−j]
3 ≤τ (e1̂e2)f [k]

which is what we wanted to show. Since k was arbitrary, we have shown this to be true for
all j ≤ k, as desired.

Case for e = 〈e1, e2〉
This is where ef [w] = 〈e1, e2〉f [w] 7→i v. By Tpair, we know that Γ ` e1 : τ1 and Γ ` e2 : τ2.

We can apply our inner induction on the size of the term to e
f [w]
1 7→i1 v1, which we must do

since the evaluation may not be any shorter (meaning i = i1). From this we get that there

exist j1, v
′
1 such that Γ ` v′1 : τ1, v1 = v

′f [w]
1 , and for all k ≥ j1, v

′f [k−j1]
1 ≤τ1 e

f [k]
1 . Similarly,

we can apply our inner induction on the size of the term to e
f [w]
2 7→i2 v2 For the same reason

as before). From this we get that there exist j2, v
′
2 such that Γ ` v′2 : τ2, v2 = v

′f [w]
2 , and for

all k ≥ j2, v
′f [k−j2]
2 ≤τ2 e

f [k]
2 .

Pick j = j1 + j2 and v′ = 〈v′1, v′2〉. By rule Tpair, we know that Γ ` v′ : τ1 × τ2. Also, since

v1 = v
′f [w]
1 and v2 = v

′f [w]
2 , we know that v = 〈v1, v2〉 = 〈v′f [w]

1 , v
′f [w]
2 〉 = 〈v′1, v′2〉f [w] = v′f [w].

Let j ≤ k, and define k1 = k− j2 and k2 = k− j1. Since j1 ≤ k1, by the above we know that

v
′f [k1−j1]
1 ≤τ1 e

f [k1]
1 . This is equivalent to

v
′f [k−j]
1 ≤τ1 e

f [k−j2]
1

29

By Lemma 6.4, we know that e
f [k−j2]
1 ≤τ1 e

f [k]
1 , so by the transitivity of contextual approxi-

mation,

v
′f [k−j]
1 ≤τ1 e

f [k]
1

Similarly, using k2 in the same way as k1 we can deduce that

v
′f [k−j]
2 ≤τ2 e

f [k]
2

again using our results from induction and Lemma 6.4.

Using the context C1 = 〈o, v′f [k−j]
2 〉 : (· . τ1) (· . τ1 × τ2) we can apply Lemma 5.5 to

v
′f [k−j]
1 ≤τ1 e

f [k]
1

which gets us that

〈v′f [k−j]
1 , v

′f [k−j]
2 〉 ≤τ1×τ2 〈e

f [k]
1 , v

′f [k−j]
2 〉

Using the context C2 = 〈ef [k]
1 , o〉 : (· . τ2) (· . τ1 × τ2) we can apply Lemma 5.5 to

v
′f [k−j]
2 ≤τ2 e

f [k]
2

which gets us that

〈ef [k]
1 , v

′f [k−j]
2 〉 ≤τ1×τ2 〈e

f [k]
1 , e

f [k]
2 〉

Then by transitivity of contextual approximation, we have that

〈v′f [k−j]
1 , v

′f [k−j]
2 〉 ≤τ1×τ2 〈e

f [k]
1 , e

f [k]
2 〉

Or equivalently, v′f [k−j] ≤τ1×τ2 ef [k], as desired.

Case for e = πie
′

This is where ef [w] = πie
′f [w] 7→i v. By Tproj, we know that Γ ` e′ : τ1×τ2, where τi = τ . By

induction on e′f [w] 7→i′ 〈v1, v2〉, which we can do by the length since i′ < i, we get that there
exist j′, v′′ such that Γ ` v′′ : τ1 × τ2, v = v′′f [w], and for all j′ ≤ k, v′′f [k−j′] ≤τ1×τ2 e′f [k].

Since Γ ` v′′ : τ1 × τ2, by rule Tpair we know that v′′ = 〈v′1, v′2〉 for some v′1, v
′
2 such that

Γ ` v′1 : τ1 and Γ ` v′2 : τ2. Pick j = j′ and v′ = v′i. By above we know that Γ ` v′i : τ , and

since 〈v1, v2〉 = v′′f [w], v = vi = v
′f [w]
i . Suppose j = j′ ≤ k. Since v′′f [k−j] ≤τ1×τ2 e′f [k], We

can apply Lemma 5.5 to the context C′ = C{πio} : (· . τ1 × τ2) (· . τ) to get that

πi〈v′f [k−j]
1 , v

′f [k−j]
2 〉 ≤τ πie′f [k]

Then, using Lemma 5.7 on the fact that πi〈v′f [k−j]
1 , v

′f [k−j]
2 〉 7→ v

′f [k−j]
i , we can get that and

so v
′f [k−j]
i ≤τ πie′f [k] as desired.

Case for e = e′[τ ′]
This is where ef [w] = (e′[τ ′])f [w] 7→i v. By Ttapp, we know that Γ ` e′ : ∀α.τ . By induction
on e′f [w] 7→i1 v1, which we can do by length since i1 < i, we get that there exist j1, v

′
1 such

that Γ ` v′1 : ∀α.τ , v1 = v
′f [w]
1 , and for all j1 ≤ k, v

′f [k−j1]
1 ≤∀α.τ e′f [k].

Since Γ ` v′1 : ∀α.τ , we know by rule Ttlam that v′1 = Λα.e′′ for some e′′ such that α; Γ `
e′′ : τ . By rule Etapp2 we know that ((Λα.e′′)[τ ′])f [w] 7→ ([τ ′/α]e′′)f [w]. Now we can again
apply induction on the evaluation ([τ ′/α]e′′)f [w] 7→i2 v2 to get that there exist j2, v

′
2 such that

Γ ` v′2 : τ , v2 = v
′f [w]
2 , and for all j2 ≤ k, v

′f [k−j2]
2 ≤τ ([τ ′/α]e′′)f [k].

30

Pick j = j1 + j2 and v′ = v′2. We already know that Γ ` v′ : τ by the above, and since v = v2,

we have that v = v2 = v
′f [w]
2 = v′f [w]. Now suppose we have k such that j ≤ k.

Defining k2 = k − j1, by our above induction we have that

v
′f [k2−j2]
2 ≤τ ([τ ′/α]e′′)f [k2]

which is equivalent to

v
′f [k−j]
2 ≤τ ([τ ′/α]e′′)f [k−j1]

Since we also know that (v′1[τ ′])f [k−j1] 7→ ([τ ′/α]e′′)f [k−j1], by Lemma 5.7

([τ ′/α]e′′)f [k−j1] ≤τ (v′1[τ ′])f [k−j1]

Therefore by transitivity we know that

v
′f [k−j]
2 ≤τ (v′1[τ ′])f [k−j1]

Now by our induction results from above, we know that

v
′f [k−j1]
1 ≤∀α.τ e′f [k]

Using the context C1 = o[τ ′] : (· . ∀α.τ) (· . τ) we can apply Lemma 5.5 to get that

(v
′f [k−j1]
1)[τ ′] ≤τ (e′f [k])[τ ′]

which is equivalent to
(v′1[τ ′])f [k−j1] ≤τ (e′[τ ′])f [k]

Then by transitivity, we have that

v
′f [k−j]
2 ≤τ (e′[τ ′])f [k]

or equivalently v′f [k−j] ≤τ ef [k], which is what we wanted to show.

Case for e = unpack[α, x] = e1 in e2

This is where ef [w] = (unpack[α, x] = e1 in e2)f [w] 7→i v. By Tunpack, we know that Γ ` e1 :

∃α.τ1. By induction on e
f [w]
1 7→i1 v1, which we can do by length since i1 < i, we get that

there exist j1, v
′
1 such that Γ ` v′1 : ∃α.τ1, v1 = v

′f [w]
1 , and for all j1 ≤ k, v

′f [k−j1]
1 ≤∃α.τ1 e′f [k].

Since Γ ` v′1 : ∃α.τ1, we know by rule Tpack that v′1 = pack[τ ′, e′1] as ∃α.τ1 for some e′1 such
that α; Γ ` e′1 : τ1. By rule Eunpack2 we know that

(unpack[α, x] = (pack[τ ′, e′1] as∃α.τ1) in e2)f [w] 7→ ([τ ′/α][e′1/x]e2)f [w]

Now we can again apply induction on the evaluation ([τ ′/α][e′1/x]e2)f [w] 7→i2 v2 to get

that there exist j2, v
′
2 such that Γ ` v′2 : τ , v2 = v

′f [w]
2 , and for all j2 ≤ k, v

′f [k−j2]
2 ≤τ

([τ ′/α][e′1/x]e2)f [k].

Pick j = j1 + j2 and v′ = v′2. We already know that Γ ` v′ : τ by the above, and since v = v2,

we have that v = v2 = v
′f [w]
2 = v′f [w]. Now suppose we have k such that j ≤ k.

Defining k2 = k − j1, by our above induction we have that

v
′f [k2−j2]
2 ≤τ ([τ ′/α][e′1/x]e2)f [k2]

31

which is equivalent to

v
′f [k−j]
2 ≤τ ([τ ′/α][e′1/x]e2)f [k−j1]

Since we also know that

(unpack[α, x] = v′1 in e2)f [k−j1] 7→ ([τ ′/α][e′1/x]e2)f [k−j1]

we then know by Lemma 5.7 that

([τ ′/α][e′1/x]e2)f [k−j1] ≤τ (unpack[α, x] = v′1 in e2)f [k−j1]

Therefore by transitivity we know that

v
′f [k−j]
2 ≤τ (unpack[α, x] = v′1 in e2)f [k−j1]

Now by our induction results from above, we know that

v
′f [k−j1]
1 ≤∃α.τ e

f [k]
1

Using the context C1 = unpack[α, x] = o in e2 : (· . ∃α.τ) (· . τ) we can apply Lemma 5.5
to get that

unpack[α, x] = v
′f [k−j1]
1 in e2 ≤τ unpack[α, x] = e

f [k]
1 in e2

which is equivalent to

(unpack[α, x] = v′1 in e2)f [k−j1] ≤τ (unpack[α, x] = e1 in e2)f [k]

Then by transitivity using the above, we have that

v
′f [k−j]
2 ≤τ (unpack[α, x] = e1 in e2)f [k]

or equivalently v′f [k−j] ≤τ ef [k], which is what we wanted to show.

32

6.2 Compactness

Theorem 6.6. Given a closed recursive function value f , where · ` f : τ such that either τ =
τ1 → τ2 or τ = τ1 ⇒ τ2, then for all terms e such that w : τ ` e : τ ′, ef [w] ↓ ⇔∃n.ef [n] ↓ This can
also be expressed as ef [w] ' ef [n] for some n.

Proof. First we will show the forward direction, ef [w] ↓ ⇒∃n.ef [n] ↓ Suppose ef [w] ↓, that is, for
some · ` v : τ ′, ef [w] 7→∗ v. Then we can apply Lemma 6.5 to get that there exist j, v′ such that
w : τ ` v′ : τ ′, v = v′f [w], and for all k ≥ j, v′f [k−j] ≤τ ′ ef [k].

Pick n = j + 1. For the empty context, we get that v′f [n−j] . ef [n] or equivalently v′f [1] . ef [n].
Since v′f [1] is a value, we know that v′f [1] ↓, so by definition then ef [n] ↓, as desired.

Now we will show the backward direction, ∃n.ef [n] ↓ ⇒ ef [w] ↓ Assume that for some n, we have
that ef [n] ↓. However, by Corollary 6.3, we know that fn ≤τ fw, so then by Lemma 5.9 we know
that ef [n] ≤τ ′ ef [w], which gets us the desired result by definition, that ef [w] ↓.

33

7 Relations

Definition The set Val(τ) is the set of all values v of type τ .

Definition A relation over values R is a subset of Val(τ)× Val(τ ′), which consists of all pairs of
values of types τ and τ ′, respectively. We say v R v′ iff (v, v′) ∈ R , and thus · ` v : τ and · ` v′ : τ ′.

Definition Given a relation R ⊆ Val(τ) × Val(τ ′) over values, we can convert it to a relation
over functions, written R S, such that R S ⊆ Val(τ → τ2) × Val(τ ′ → τ ′2). These functions can be
thought of as “stacks” or continuations that contain remaining computation to be done. We define
this continuation relation R S as follows:

f R S f ′ iff ∀v, v′. if v R v′ then f v ' f ′ v′

Similarly, given such a function relation R ⊆ Val(τ → τ2)× Val(τ ′ → τ ′2), we can convert it back
into a value relation, written R T, such that R T ⊆ Val(τ)× Val(τ ′). We define it as follows:

v R T v′ iff ∀f, f ′. if f R f ′ then f v ' f ′ v′

The benefit of these relation transformations is clearer after seeing the properties that they provide.
For simplicity, the letter symbols f and g and their variants will be used to indicate functions.

7.1 ST Closure

Definition Given a relation R ⊆ Val(τ)× Val(τ ′), we call R ST the ST-closure of R . If R = R ST,
then we say that R is ST-closed.

Lemma 7.1. For a given relation R ⊆ Val(τ) × Val(τ ′), R ⊆ R ST (meaning that the ST-closure
is inflationary).

Proof. Assume v R v′. We want to show that v R ST v′.

By the definition of R S, we know that if (f, f ′) ∈ R S then f v ' f ′ v′, since by assumption v R v′.
Then by the definition of R ST, we have that v R ST v′.

Lemma 7.2. For a given relation R ⊆ Val(τ)×Val(τ ′), R ST = R STST (meaning that the ST-closure
is idempotent).

Proof. First, we need to show that if v R ST v′, then v R STST v′. We already know this from the proof
that R ⊆ R ST, so this case is done.

Now we need to show that if v R STST v′, then v R ST v′. Assume that v R STST v′. This means that if
f R STS f ′, then f v ' f ′ v′. For v R ST v′ to be true, we need to show that for all f R S f ′, f v ' f ′ v′.
To show this we just need to prove that R S ⊆ R STS, which can be shown in a manner very similar
to the proof of R ⊆ R ST in Lemma 7.1.

Thus, the two sets must be equal.

34

Definition We can extend a relation R ⊆ Val(τ)×Val(τ ′) over values to a relation R E over terms
by considering only terms that evaluate to those values:

e R E e′ iff e ' e′ and ∀v, v′. if e 7→∗ v and e′ 7→∗ v′ then v R v′

where · ` e : τ and · ` e′ : τ ′.

Corollary 7.3. Given a relation R ⊆ Val(τ)× Val(τ ′), then R ⊆ R E.

Lemma 7.4. Given a relation R ⊆ Val(τ)× Val(τ ′), if e′1 7→ e1 then (e1, e2) ∈ R E⇔(e′1, e2) ∈ R E.
Also, if e′2 7→ e2, then (e1, e2) ∈ R E⇔(e1, e

′
2) ∈ R E

Proof. We will first show the forward direction. Suppose that R ⊆ Val(τ)×Val(τ ′) where (e1, e2) ∈
R E such that e′1 7→ e1. We want to show that (e′1, e2) ∈ R E.

First we need to show that e′1 ' e2. We know that e1 ' e2 by assumption. We also know that
e′1 ' e1 due to rule Hstep, so therefore e′1 ' e2 by transitivity.

Now we just need to show that ∀v1, v2. if e′1 7→∗ v1 and e2 7→∗ v2 then (v1, v2) ∈ R . But if e′1 7→∗ v1,
then e1 7→∗ v1 since e′1 7→ e1. Since we already know that ∀v1, v2. if e1 7→∗ v1 and e2 7→∗ v2 then
(v1, v2) ∈ R by assumption, the result follows.

For the opposite direction, suppose that (e′1, e2) ∈ R E and that e′1 7→ e1. We want to show that
(e1, e2) ∈ R E.

First we need to show that e1 ' e2. We know that e′1 ' e2 by assumption. We also know that
e′1 ' e1 due to rule Hstep, so therefore e′1 ' e2 by transitivity.

Now we just need to show that ∀v1, v2. if e1 7→∗ v1 and e2 7→∗ v2 then (v1, v2) ∈ R . But if e1 7→∗ v1,
then e′1 7→∗ v1 since e′1 7→ e1. Since we already know that ∀v1, v2. if e′1 7→∗ v1 and e2 7→∗ v2 then
(v1, v2) ∈ R by assumption, the result follows.

Proving the other case works out in essentially the same way.

Corollary 7.5. Given a relation R ⊆ Val(τ)× Val(τ ′), if e′1 7→∗ e1 and e′2 7→∗ e2 then

(e1, e2) ∈ R E⇔(e′1, e
′
2) ∈ R E

Lemma 7.6. Given a relation R ⊂ Val(τ) × Val(τ), if (f, f ′) ∈ R S and (e, e′) ∈ R STE, where
· ` e : τ and · ` e′ : τ , then f e ' f ′ e′.

Proof. Let (f, f ′) ∈ R S and suppose that · ` e : τ and · ` e′ : τ . First, assume that e R STE e′, we
want to show that f e ' f ′ e′. From the definition, we know that e ' e′. Suppose neither e nor e′

terminate. Then neither f e nor f ′ e′ terminate, because there exist no values that e and e′ step
to that allow rule Eapp3 to be applied. Now suppose both e ↓ and e′ ↓. Then there exist some v, v′

such that e 7→∗ v and e′ 7→∗ v′. By definition, (v, v′) ∈ R ST, and thus f v ' f ′ v′. Therefore, by
rule Hstep, f e ' f ′ e′, which we have shown to be true in both cases and thus the desired result
is obtained.

Lemma 7.7. Given relations R ⊆ Val(τ1)×Val(τ ′1) and Q ⊆ Val(τ2)×Val(τ ′2) such that Q = Q ST,
and that (v, v′) ∈ R ⇒(g v, g′ v′) ∈ Q E, then (v, v′) ∈ R ST⇒(g v, g′ v′) ∈ Q STE = Q E, where
g : τ1 → τ2 and g′ : τ ′1 → τ ′2.

Proof. Assume that (v, v′) ∈ R ST. We want to show that (g v, g′ v′) ∈ Q E. Suppose (f, f ′) ∈ Q S.
Now we just need to show that f (g v) ' f ′ (g′ v′). We claim that (f ◦g, f ′ ◦g′) ∈ R S, which would
imply this fact by the assumption that (v, v′) ∈ R ST.

35

Suppose (u, u′) ∈ R . We need to show that f (g u) ' f ′ (g′ u′). By our assumption that (u, u′) ∈
R ⇒(g u, g′ u′) ∈ Q E, we know that (g u, g′ u′) ∈ Q E. The result follows from applying Lemma 7.6
with (f, f ′) ∈ Q S and (g u, g′ u′) ∈ Q STE.

7.2 Admissibility

Definition Let R ⊆ Val(τ)× Val(τ ′), and define the recursive functions · ` f : τ ′′ and · ` f ′ : τ ′′,
where either τ ′′ = τ1 → τ2 or τ ′′ = τ1 ⇒ τ2.

Given that w : τ ′′ ` e : τ and w : τ ′′ ` e′ : τ ′, we say that R is admissible if

(ef [i], e′f
′[i]) ∈ R E for all i = 0, 1, ...⇒ (ef [w], e′f

′[w]) ∈ R E

Lemma 7.8. Let R ⊆ Val(τ)× Val(τ ′) such that R = R ST. Then R is admissible.

Proof. To show the result, we need to show that ef [w] ' e′f ′[w] and that for all v and v′, if ef [w] 7→∗ v
and e′f

′[w] 7→∗ v′, then (v, v′) ∈ R .

By Theorem 6.6 on ef [w] we get that ef [w] ' ef [i] for some i. By our assumption that (ef [i], e′f
′[i]) ∈

R E, we get that ef [i] ' e′f
′[i]. Then by applying Theorem 6.6 again but this time for the reverse,

we get that e′f
′[i] ' e′f ′[w]. Thus by transitivity of Kleene equivalence, we have that ef [w] ' e′f ′[w].

Now assume ef [w] 7→∗ v and e′f [w] 7→∗ v′ for some v, v′. We want to show that (v, v′) ∈ R . Let
(g, g′) ∈ R S. Now if we consider (g e)f [w], by Theorem 6.6 we know that (g e)f [w] ' (g e)f [i] for
some i. By our assumption, we know that (ef [i], e′f

′[i]) ∈ R E. Then we can apply Lemma 7.6
using the fact that R E = R STE to get that g (ef [i]) ' g′ (e′f

′[i]). Similar to before, we can apply
Theorem 6.6 to get that (g′ e′)f

′[i] ' (g′ e′)f
′[w].

By the transitivity of Kleene equivalence, we get that (g e)f [w] ' (g′ e′)f
′[w]. Since g and g′ are

closed, this is equivalent to g ef [w] ' g′ e′f
′[w]. We know that ef [w] 7→∗ v and e′f

′[w] 7→∗ v′, so
that implies that g ef [w] 7→∗ g v and g′ e′f

′[w] 7→∗ g′ v′, and therefore g v ' g′ v′ since they have
the same termination (they are just further along in the evaluation). But since by assumption
(g, g′) ∈ R S, we know that (v, v′) ∈ R ST = R .

Therefore, because v and v′ were arbitrary, we have that (ef [w], e′f
′[w]) ∈ R E, as desired.

36

8 Logical Equivalence

Definition The judgement δ : ∆ states that δ is a type substitution that assigns a closed type to
each type variable α ∈ ∆. A type substitution δ induces a substitution function δ̂ on types ∆ ` τ
given by the equation

δ̂(τ) = [δ(α1)/α1]...[δ(αn)/αn]τ

and similarly for terms. Substitution is extended to contexts pointwise by defining δ̂(Γ)(x) =
δ̂(Γ(x)) for each x ∈ dom(Γ).

Definition Given two type substitutions, δ1 : ∆ and δ2 : ∆, we define an ST-closed relation
assignment, η, between δ1 and δ2 as an assignment of an ST-closed relation η(α) ∈ Val(δ1(α)) ×
Val(δ2(α)) to each α ∈ ∆. The judgement η : δ1 ↔ δ2 states that η is an ST-closed relation
assignment between δ1 and δ2.

Definition Suppose ∆ ` τ type for the below types. Also suppose that δ1 : ∆ and δ2 : ∆, and
that η : δ1 ↔ δ2. We define a relation [τ] based on types as follows

[α]η:δ1↔δ2 = η(α)

[unit]η:δ1↔δ2 = {((), ())}
[int]η:δ1↔δ2 = {(v, v) | v ∈ Val(int)}
[τ1 → τ2]η:δ1↔δ2 = {(v1, v2) ∈ Val(δ1(τ1 → τ2))× Val(δ2(τ1 → τ2)) |

if (v′1, v
′
2) ∈ [τ1]η:δ1↔δ2 then (v1 v

′
1, v2 v

′
2) ∈ [τ2]

E
η:δ1↔δ2}

[τ1 ⇒ τ2]η:δ1↔δ2 = {(v1, v2) ∈ Val(δ1(τ1 ⇒ τ2))× Val(δ2(τ1 ⇒ τ2)) |

if (v′1, v
′
2) ∈ [τ1]η:δ1↔δ2 then (v1̂v′1, v2̂v′2) ∈ [τ2]

E
η:δ1↔δ2}

[τ1 × τ2]η:δ1↔δ2 = {(v1, v2) ∈ Val(δ1(τ1 × τ2))× Val(δ2(τ1 × τ2)) |
(π1v1, π1v2) ∈ [τ1]η:δ1↔δ2 and (π2v1, π2v2) ∈ [τ2]η:δ1↔δ2}

[∀α.τ]η:δ1↔δ2 = {(v1, v2) ∈ Val(δ1(∀α.τ))× Val(δ2(∀α.τ)) |
∀τ1 type, τ2 type, R ⊆ Val(τ1)× Val(τ2) for R = R ST

(v1[τ1], v2[τ2]) ∈ [τ]E(η⊗α↪→ R):(δ1⊗α↪→τ1)↔(δ2⊗α↪→τ2)}

[∃α.τ]η:δ1↔δ2 = {(v1, v2) ∈ Val(δ1(∃α.τ))× Val(δ2(∃α.τ)) |
∃∆ ` τ1 type,∆ ` τ2 type, R ⊆ Val(τ1)× Val(τ2) for R = R ST

(v′1, v
′
2) ∈ [τ](η⊗α↪→ R):(δ1⊗α↪→τ1)↔(δ2⊗α↪→τ2)

with v1 = pack[τ1, v
′
1] as∃α.τ and v2 = pack[τ2, v

′
2] as ∃α.τ}ST

As a shorthand, when η is empty, we just write [τ].

Lemma 8.1. For all τ , [τ]η:δ1↔δ2 = [τ]STη:δ1↔δ2 .

Proof. We already know that [τ]η:δ1↔δ2 ⊆ [τ]STη:δ1↔δ2 by Lemma 7.1.

Thus it just remains to be shown that [τ]STη:δ1↔δ2 ⊆ [τ]η:δ1↔δ2 , which will proceed by induction on
the structure of τ .

37

Case for τ = α
By definition, we know that [α]η:δ1↔δ2 = η(α). The result follows from the fact that η(α) is
ST-closed.

Case for τ = unit

Trivial, because [unit]STη:δ1↔δ2 only relates values of type unit, and since there is only one value of

type unit, [unit]STη:δ1↔δ2 = {((), ())} = [unit]η:δ1↔δ2 .

Case for τ = int

Suppose that (v1, v2) ∈ [int]STη:δ1↔δ2 . We want to show that (v1, v2) ∈ [int]η:δ1↔δ2 . First, define

f = λx : int.ifz(x − v, 0,⊥). It must be that (f, f) ∈ [int]Sη:δ1↔δ2 , because by the definition
of [int]η:δ1↔δ2 , all pairs in it are of the form (v, v) ∈ [int]η:δ1↔δ2 , and clearly f v ' f v. Since

(f, f) ∈ [int]Sη:δ1↔δ2 , we know that f v1 ' f v2 by the definition of [int]STη:δ1↔δ2 . But the only way
for f v2 to have the same halting behavior as f v1 (which converges to 0) is if v1 = v2, as otherwise
f v2 will diverge. Thus v1 = v2, and so (v1, v2) = (v1, v2) ∈ [int]η:δ1↔δ2 since v1 ∈ Val(int).

Case for τ = τ1 → τ2

We will prove this case by making use of Lemma 7.7. First we will define R = [τ1 → τ2]η:δ1↔δ2 and

Q = [τ2]η:δ1↔δ2 . By induction on τ2 we know that Q = Q ST. Also, define g1 = λh1 : τ1 → τ2.h1 v1

and g2 = λh2 : τ1 → τ2.h2 v2, where (v1, v2) ∈ [τ1]η:δ1↔δ2 .

We want to show that (f1, f2) ∈ R ⇒(g1 f1, g2 f2) ∈ Q E. Assume (f1, f2) ∈ R . Then g1 f1 7→ f1 v1

and g2 f2 7→ f2 v2. Since (v1, v2) ∈ [τ1]η:δ1↔δ2 by assumption, we know that (f1 v1, f2 v2) ∈ Q E by

the definition of R = [τ1 → τ2]η:δ1↔δ2 . Therefore, by Corollary 7.5, (g1 f1, g2 f2) ∈ Q E, as desired.

Then by Lemma 7.7, we know that (f1, f2) ∈ R ST⇒(g1 f1, g2 f2) ∈ Q E. Assume that (f1, f2) ∈ R ST.
To show this case, we need to show that (f1, f2) ∈ R . However, by the above we know that
(g1 f1, g2 f2) ∈ Q E, and thus (f1 v1, f2 v2) ∈ Q E by Corollary 7.5. Then by the definition of
[τ1 → τ2]η:δ1↔δ2 , (f1, f2) ∈ R , and so the result follows.

Case for τ = τ1 ⇒ τ2

Essentially the same as the case for τ = τ1 → τ2.

Case for τ = τ1 × τ2

We will prove this case similarly to the τ1 → τ2 case in that we’ll make use of Lemma 7.7, however
it will set it up slightly differently. Define R = [τ1× τ2]η:δ1↔δ2 and Q 1 = [τ1]η:δ1↔δ2 . By induction

we know that Q 1 = Q ST
1 . Also, define g1 = λh1 : τ1 × τ2.π1h1 and g2 = λh2 : τ1 × τ2.π1h2.

We want to show that (v1, v2) ∈ R ⇒(g1 v1, g2 v2) ∈ Q E. Assume (v1, v2) ∈ R . We know
that g1 v1 7→ π1v1 and g2 v2 7→ π1v2. By the definition of R = [τ1 × τ2]η:δ1↔δ2 , we know that

(π1v1, π1v2) ∈ Q E
1. Therefore, by Corollary 7.5, we get that (g1 v1, g2 v2) ∈ Q E

1.

Using this fact, we can apply Lemma 7.7 to get that (v1, v2) ∈ R ST⇒(g1 v1, g2 v2) ∈ Q E
1. Thus,

if we assume that (v1, v2) ∈ R ST, we want to show that (v1, v2) ∈ R . By the above, we get that
(g1 v1, g2 v2) ∈ Q E

1. Again using Corollary 7.5, we get that (π1v1, π1v2) ∈ Q E
1.

We can then do the same as above but this time using Q 2 = [τ2]η:δ1↔δ2 and show that (π2v1, π2v2) ∈
Q E

2. This combined with the above fact shows us that by definition (v1, v2) ∈ R , as desired.

Case for τ = ∀α.τ ′
Again we will make use of Lemma 7.7. Define R = [∀α.τ ′]η:δ1↔δ2 . Also, for · ` τ1 type, · ` τ2 type

38

and R ′ ⊆ Val(τ1) × Val(τ2) such that R ′ = R ′ST define η′ = η ⊗ α ↪→ R ′, δ′1 = δ1 ⊗ α ↪→ τ1 and
δ′2 = δ2 ⊗ α ↪→ τ2. Then let Q = [τ ′]η′:δ′1↔δ′2

, as well as g1 = λh1 : ∀α.τ ′.h1[τ1] and g2 = λh2 :

∀α.τ ′.h2[τ2].

To make use of the lemma, we must show that (v1, v2) ∈ R ⇒(g1 v1, g2 v2) ∈ Q E. Assume
that (v1, v2) ∈ R . We know that g1 v1 7→ v1[τ1] and g2 v2 7→ v2[τ2]. By the definition of
R = [∀α.τ ′]η:δ1↔δ2 , we know that (v1[τ1], v2[τ2]) ∈ Q E since τ1 and τ2 were arbitrary. Therefore,

by Corollary 7.5, we get that (g1 v1, g2 v2) ∈ Q E.

Using this fact, we can apply Lemma 7.7 to get that (v1, v2) ∈ R ST⇒(g1 v1, g2 v2) ∈ Q E. Thus,
if we assume that (v1, v2) ∈ R ST, we want to show that (v1, v2) ∈ R . By the above, we get that
(g1 v1, g2 v2) ∈ Q E. Again using Corollary 7.5, we get that (v1[τ1], v2[τ2]) ∈ Q E. Then by definition,
we have that (v1, v2) ∈ R .

Case for τ = ∃α.τ ′
Unfortunately, we can’t use the same strategies as in the previous cases to prove this case. Thus, we
have to build the ST-closure into the definition. Since [∃α.τ ′]η:δ1↔δ2 is defined as the ST-closure
of something, and since we previously proved that the ST-closure is idemptotent, we have that
[∃α.τ ′]STη:δ1↔δ2 = [∃α.τ ′]η:δ1↔δ2 , as desired.

Corollary 8.2. For all τ , [τ]η:δ1↔δ2 is admissible.

Proof. Follows immediately from Lemma 8.1 and Lemma 7.8.

Lemma 8.3. For [τ]Eη:δ1↔δ2 , we can essentially use the definition as if it were [τ]η:δ1↔δ2 . More
specifically, the following are true:

If (π1e1, π1e2) ∈ [τ1]
E
η:δ1↔δ2 and (π2e1, π2e2) ∈ [τ2]

E
η:δ1↔δ2 , then (e1, e2) ∈ [τ1 × τ2]

E
η:δ1↔δ2 .

If (e1, e2) ∈ [τ1 → τ2]
E
η:δ1↔δ2 , then if (e′1, e

′
2) ∈ [τ1]

E
η:δ1↔δ2 , (e1 e

′
1, e2 e

′
2) ∈ [τ2]

E
η:δ1↔δ2 .

If (e1, e2) ∈ [τ]Eη′:δ′1↔δ′2
, where δ′1 = δ1⊗α ↪→ τ1, δ′2 = δ2⊗α ↪→ τ2, η′ = η⊗α ↪→ R for an ST-closed

R ⊆ Val(τ1)× Val(τ2), then (pack[τ1, e1] as ∃α.τ, pack[τ2, e2] as ∃α.τ) ∈ [∃α.τ]Eη:δ1↔δ2 .

Proof. Case for τ1 × τ2

Suppose that (π1e1, π1e2) ∈ [τ1]
E
η:δ1↔δ2 and (π2e1, π2e2) ∈ [τ2]

E
η:δ1↔δ2 , we want to show that

(e1, e2) ∈ [τ1 × τ2]
E
η:δ1↔δ2 . If e1 does not terminate, then clearly neither do π1e1 and π2e1. By

our assumptions this implies that neither π1e2 nor π2e2 terminate. This implies that e2 doesn’t
terminate (and the same can be shown in the other direction). Thus the result holds in this case.

Suppose that e1 ↓, so e1 7→∗ 〈v1, v2〉, where v1 val and v2 val. Then clearly π1e1 7→∗ v1 and
π2e1 7→∗ v2. Then by our assumptions we know that π1e2 7→∗ v′1 and π2e2 7→∗ v′2, where (v1, v

′
1) ∈

[τ1]η:δ1↔δ2 and (v2, v
′
2) ∈ [τ2]η:δ1↔δ2 . Then by definition (e1, e2) ∈ [τ1 × τ2]

E
η:δ1↔δ2 , as desired.

Case for τ1 → τ2

Suppose that (e1, e2) ∈ [τ1 → τ2]
E
η:δ1↔δ2 and (e′1, e

′
2) ∈ [τ1]

E
η:δ1↔δ2 , and we want to show that

(e1 e
′
1, e2 e

′
2) ∈ [τ2]

E
η:δ1↔δ2 . Suppose that e1 e

′
1 ↓. This implies that e1 ↓ and e′1 ↓, which by the

above implies that e2 ↓ and e′2 ↓. Thus we have that e1 7→∗ v1, e′1 7→∗ v′1, e2 7→∗ v2, and e′2 7→∗ v′2 for
values v1, v

′
1, v2, v

′
2. This tells us that (v1, v2) ∈ [τ1 → τ2] and (v′1, v

′
2) ∈ [τ1]η:δ1↔δ2 , so by definition

(v1 v
′
1, v2 v

′
2) ∈ [τ2]

E
η:δ1↔δ2 . However, we know that e1 e

′
1 7→∗ v1 v

′
1 and e2 e

′
2 7→∗ v2 v

′
2, which

39

implies that (e1 e
′
1, e2 e

′
2) ∈ [τ2]

E
η:δ1↔δ2 , as desired. This also tells us that e2 e

′
2 ↓. Similarly we can

show this assuming that e2 e
′
2 ↓, which will tell us that e1 e

′
1 ↓. Thus we have that e1 e

′
1 ' e2 e

′
2,

and then if they both terminate the above gets us the desired result.

Case for ∃α.τ
Suppose (e1, e2) ∈ [τ]Eη′:δ′1↔δ′2

, where δ′1 = δ1 ⊗ α ↪→ τ1, δ′2 = δ2 ⊗ α ↪→ τ2, η′ = η ⊗ α ↪→ R for an

ST-closed R ⊆ Val(τ1)× Val(τ2), and we want to show that

(pack[τ1, e1] as ∃α.τ, pack[τ2, e2] as ∃α.τ) ∈ [∃α.τ]Eη:δ1↔δ2

First, if pack[τ1, e1] as ∃α.τ doesn’t terminate, then clearly e1 doesn’t terminate. By assumption,
this implies that e2 doesn’t terminate, which then implies that pack[τ2, e2] as ∃α.τ doesn’t as well.

If pack[τ1, e1] as ∃α.τ does terminate, then we know that

pack[τ1, e1] as∃α.τ 7→∗ pack[τ1, v1] as ∃α.τ

for some v1. But this means that e1 7→∗ v1, which means that by assumption there must be some
v2 such that e2 7→∗ v2, and (v1, v2) ∈ [τ]η:δ1↔δ2 . But then by definition of the type relation,

(pack[τ1, v1] as ∃α.τ, pack[τ2, v2] as ∃α.τ) ∈ [∃α.τ]η:δ1↔δ2

So the desired result follows.

Definition Recalling our definition of expression substitutions γ from earlier, we define the relation
γ ∼Γ γ

′[η : δ1 ↔ δ2] to mean that γ : Γ, γ′ : Γ, and that for all x ∈ Γ, (γ(x), γ′(x)) ∈ [Γ(x)]Eη:δ1↔δ2 .

Definition We say that the expressions ∆; Γ ` e1 : τ and ∆; Γ ` e2 : τ are logically equivalent,
written ∆; Γ ` e1 ∼ e2 : τ iff, for every assignment δ1 : ∆ and δ2 : ∆, and every ST-closed relation
assignment η : δ1 ↔ δ2, if γ1 ∼Γ γ2[η : δ1 ↔ δ2] then (γ̂1(δ̂1(e1)), γ̂2(δ̂2(e2))) ∈ [τ]Eη:δ1↔δ2 .

As a shorthand, we write e1 ∼τ e2 instead of · ` e1 ∼ e2 : τ .

8.1 Compositionality

Lemma 8.4. If [τ]η:δ1↔δ2 = [τ ′]η′:δ′1↔δ′2
, then [τ]Eη:δ1↔δ2 = [τ ′]Eη′:δ′1↔δ′2

,

Proof. Suppose that (e1, e2) ∈ [τ]Eη:δ1↔δ2 . If e1 does not halt, then we know that e2 also does not

halt, and thus (e1, e2) ∈ [τ ′]Eη′:δ′1↔δ′2
. However, if e1 ↓, then also e2 ↓, so we know that e1 7→∗ v1

and e2 7→∗ v2, and thus (v1, v2) ∈ [τ]η:δ1↔δ2 . But by assumption, (v1, v2) ∈ [τ ′]η′:δ′1↔δ′2
, and thus

by definition (e1, e2) ∈ [τ ′]Eη′:δ′1↔δ′2
.

Lemma 8.5. Suppose ∆ ` τ ′ and δ1 : ∆, δ2 : ∆, and η : δ1 ↔ δ2. Let R = [τ ′]η:δ1↔δ2 . Then
(v1, v2) ∈ [[τ ′/α]τ]η:δ1↔δ2 if and only if (v1, v2) ∈ [τ]η′:δ′1↔δ′2

, where η′ = η⊗α ↪→ R , δ′1 = δ1⊗α ↪→
δ1(τ ′), and δ′2 = δ2 ⊗ α ↪→ δ2(τ ′).

Proof. By induction on the structure of τ .

40

Case for τ = α
Since τ = α, [τ]η′:δ′1↔δ′2

= R , where as defined above R = [τ ′]η:δ1↔δ2 = [[τ ′/α]τ]η:δ1↔δ2 , so these
are the same and the desired result holds.

Case for τ = α′ 6= α
Since α′ 6= α, we know that α′ ∈ η, so we have that both [τ]η′:δ′1↔δ′2

= η(α′) and [[τ ′/α]τ]η′:δ′1↔δ′2
=

η(α′), so these are the same and the desired result holds.

Case for τ = unit

Trivially true, since the logical relation for unit does not depend on type variables.

Case for τ = int

Trivially true, since the logical relation for int does not depend on type variables.

Case for τ = τ1 → τ2

Assume (v1, v2) ∈ [[τ ′/α]τ]η:δ1↔δ2 , which tells us that

(v′1, v
′
2) ∈ [[τ ′/α]τ1]η:δ1↔δ2⇒(v1 v

′
1, v2 v

′
2) ∈ [[τ ′/α]τ2]η:δ1↔δ2

Assuming that (v′1, v
′
2) ∈ [τ1]η′:δ′1↔δ′2

, we know by induction that (v′1, v
′
2) ∈ [[τ ′/α]τ1]η:δ1↔δ2 and

then by the above that (v1 v
′
1, v2 v

′
2) ∈ [[τ ′/α]τ2]

E
η:δ1↔δ2 . Then by induction and Lemma 8.4 we

know that (v1 v
′
1, v2 v

′
2) ∈ [τ2]

E
η′:δ′1↔δ′2

. By the definition of the logical relation this means that

(v1, v2) ∈ [τ]η′:δ′1↔δ′2
, as desired.

The opposite direction is shown in a similar manner.

Case for τ = τ1 ⇒ τ2

Assume (v1, v2) ∈ [[τ ′/α]τ]η:δ1↔δ2 , which tells us that

(v′1, v
′
2) ∈ [[τ ′/α]τ1]η:δ1↔δ2⇒(v1̂v′1, v2̂v′2) ∈ [[τ ′/α]τ2]η:δ1↔δ2

Assuming that (v′1, v
′
2) ∈ [τ1]η′:δ′1↔δ′2

, we know by induction that (v′1, v
′
2) ∈ [[τ ′/α]τ1]η:δ1↔δ2 and

then by the above that (v1̂v′1, v2̂v′2) ∈ [[τ ′/α]τ2]
E
η:δ1↔δ2 . Then by induction and Lemma 8.4 we

know that (v1̂v′1, v2̂v′2) ∈ [τ2]
E
η′:δ′1↔δ′2

. By the definition of the logical relation this means that

(v1, v2) ∈ [τ]η′:δ′1↔δ′2
, as desired.

The opposite direction is shown in a similar manner.

Case for τ = τ1 × τ2

Assume (v1, v2) ∈ [[τ ′/α]τ]η:δ1↔δ2 , which tells us that (π1v1, π1v2) ∈ [τ1]η:δ1↔δ2 and (π2v1, π2v2) ∈
[τ2]η:δ1↔δ2 . However, by induction we get that (π1v1, π1v2) ∈ [[τ ′/α]τ1]η′:δ′1↔δ′2

and (π2v1, π2v2) ∈
[[τ ′/α]τ2]η′:δ′1↔δ′2

. But this means that (v1, v2) ∈ [[τ ′/α]τ]η′:δ′1↔δ′2
, as desired.

The opposite direction is shown in a similar manner.

Case for τ = ∀β.τ ′′
Assume (v1, v2) ∈ [[τ ′/α]τ]η:δ1↔δ2 , which tells us that ∀τ1 type, τ2 type, R ⊆ Val(τ1)×Val(τ2) such

that R ′ = R ′ST,
(v1[τ1], v2[τ2]) ∈ [[τ ′/α]τ ′′]Eη⊗β↪→ R ′:δ1⊗β↪→τ1↔δ2⊗β↪→τ2

41

But by induction and Lemma 8.4, we know that

(v1[τ1], v2[τ2]) ∈ [τ ′′]Eη′⊗β↪→ R ′:δ′1⊗β↪→τ1↔δ′2⊗β↪→τ2

for the above, which then tells us that (v1, v2) ∈ [τ]η′:δ′1↔δ′2
by definition.

Case for τ = ∃β.τ ′′
First, we will prove this true for Q , where Q is equivalent to [[τ ′/α]τ]η:δ1↔δ2 except without the
additional ST-closure wrapped around it. Similarly define Q ′ in relation to [τ]η′:δ′1↔δ′2

. Assume

(v1, v2) ∈ Q , which tells us that there exist τ1 type, τ2 type, R ⊆ Val(τ1) × Val(τ2) such that
R ′ = R ′ST, where

(v′1, v
′
2) ∈ [[τ ′/α]τ ′′]η⊗β↪→ R ′:δ1⊗β↪→τ1↔δ2⊗β↪→τ2

with v1 = pack[τ1, v
′
1] as ∃β.τ ′′ and v2 = pack[τ2, v

′
2] as∃β.τ ′′. But then by induction we get that

(v′1, v
′
2) ∈ [τ ′′]η′⊗β↪→ R ′:δ′1⊗β↪→τ1↔δ′2⊗β↪→τ2

Then by definition, (v1, v2) ∈ Q ′. We can show the reverse direction in a similar manner.

We have shown that Q = Q ′, so then by Lemma 8.4, we know that Q ST = Q ′ST, which is equivalent
to saying that [[τ ′/α]τ]η:δ1↔δ2 = [τ]η′:δ′1↔δ′2

, which is what we wanted to show.

Lemma 8.6. Suppose ∆ ` τ ′ and δ1 : ∆, δ2 : ∆, and η : δ1 ↔ δ2. Let R = [τ ′]η:δ1↔δ2 . Then

(v1, v2) ∈ [[τ ′/α]τ]Eη:δ1↔δ2 if and only if (v1, v2) ∈ [τ]Eη′:δ′1↔δ′2
, where η′ = η⊗α ↪→ R , δ′1 = δ1⊗α ↪→

δ1(τ ′), and δ′2 = δ2 ⊗ α ↪→ δ2(τ ′).

Proof. Follows immediately from Lemma 8.5 and Lemma 8.4.

42

9 Logical and Contextual Equivalence Coincide

9.1 Reflexivity

Theorem 9.1. If ∆; Γ ` e : τ , then ∆; Γ ` e ∼ e : τ .

Proof. By induction over typing rules. For each case we simply need to show that given substitutions
δ1 and δ2 and an ST-closed relation assignment η : δ1 ↔ δ2 such that γ1 ∼Γ γ2[η : δ1 ↔ δ2], then
(γ̂1(δ1(e1)), γ̂2(δ2(e2))) ∈ [τ]Eη:δ1↔δ2 .

Case for Tunit
Trivially true by definition of logical equivalence, as clearly ((), ()) ∈ [unit]Eη:δ1↔δ2 .

Case for Tvar
Assume that ∆; Γ ` x : τ and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. Since x is a variable, clearly δ̂1(x) = x
and δ̂2(x) = x. Thus, since x ∈ Γ, for some e, e′ we know that γ1(x) = e1 and γ2(x) = e2. By
the definition of γ1 ∼Γ γ2[η : δ1 ↔ δ2] we know that (e1, e2) ∈ [τ]Eη:δ1↔δ2 , which by the above is

equivalent to (γ̂1(δ̂1(x)), γ̂2(δ̂2(x))) ∈ [τ]Eη:δ1↔δ2 . Thus we have the desired result.

Case for Tint
Assume that ∆; Γ ` n : int and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. By definition, (n, n) ∈ [int]η:δ1↔δ2 and thus

(n, n) ∈ [int]Eη:δ1↔δ2 . Since n is a closed term and contains no term or type variables, we know

that γ̂1(δ̂1(n)) = n and γ̂2(δ̂2(n)) = n, so we have that (γ̂1(δ̂1(n)), γ̂2(δ̂2(n))) ∈ [int]Eη:δ1↔δ2 .

Case for Tintop
Assume that ∆; Γ ` e1 p e2 : int and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. By induction we get that ∆; Γ ` e1 ∼
e1 : int and ∆; Γ ` e2 ∼ e2 : int, or equivalently

(γ̂1(δ̂1(e1)), γ̂2(δ̂2(e1))) ∈ [int]Eη:δ1↔δ2

(γ̂1(δ̂1(e2)), γ̂2(δ̂2(e2))) ∈ [int]Eη:δ1↔δ2

This means that γ̂1(δ̂1(e1)) ' γ̂2(δ̂2(e1)) and γ̂1(δ̂1(e2)) ' γ̂2(δ̂2(e2)). From this we can see that

γ̂1(δ̂1(e1 p e2)) ↓ ⇔ γ̂1(δ̂1(e1)) ↓ and γ̂1(δ̂1(e2)) ↓

⇔ γ̂2(δ̂2(e1)) ↓ and γ̂2(δ̂2(e2)) ↓ ⇔ γ̂2(δ̂2(e1 p e2)) ↓

Therefore, γ̂1(δ̂1(e1 p e2)) ' γ̂2(δ̂2(e1 p e2)), which gets us the first part of the desired result.

Now, suppose that γ̂1(δ̂1(e1)) 7→∗ n1 and γ̂2(δ̂2(e1)) 7→∗ n′1 for some n1, n
′
1. By the fact that

(γ̂1(δ̂1(e1)), γ̂2(δ̂2(e1))) ∈ [int]Eη:δ1↔δ2 by induction, we know that (n1, n
′
1) ∈ [int]η:δ1↔δ2 by the

definition of the extension to term relations. But by the definition of [int]η:δ1↔δ2 , this means
that n1 = n′1. We can show the same for e2 with some n2. Define n = n1 pn2. Since they

are substitutions, we know that γ̂1(δ̂1(e1 p e2)) is equivalent to γ̂1(δ̂1(e1)) p γ̂1(δ̂1(e2)) and similarly
that γ̂2(δ̂2(e1 p e2)) is equivalent to γ̂2(δ̂2(e1)) p γ̂2(δ̂2(e2)). Thus by the Eintop rules we know that
γ̂1(δ̂1(e1 p e2)) 7→∗ n and γ̂2(δ̂2(e1 p e2)) 7→∗ n. By definition, (n, n) ∈ [int]η:δ1↔δ2 , so we have
shown the second half of the result, and thus

(γ̂1(δ̂1(e1 p e2)), (γ̂2(δ̂2(e1 p e2)) ∈ [int]Eη:δ1↔δ2

43

Case for Tifz
Assume that ∆; Γ ` ifz(e1, e2, e3) : τ and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. We want to show that

(γ̂1(δ̂1(ifz(e1, e2, e3))), γ̂2(δ̂2(ifz(e1, e2, e3))) ∈ [τ]Eη:δ1↔δ2

or equivalently

(ifz(γ̂1(δ̂1(e1)), γ̂1(δ̂1(e2)), γ̂1(δ̂1(e3))))), ifz(γ̂2(δ̂2(e1)), γ̂2(δ̂2(e2)), γ̂2(δ̂2(e3))))) ∈ [τ]Eη:δ1↔δ2

By induction we get that ∆; Γ ` e1 ∼ e1 : int, ∆; Γ ` e2 ∼ e2 : τ , and ∆; Γ ` e3 ∼ e3 : τ , so this
tells us that

(γ̂1(δ̂1(e1)), γ̂2(δ̂2(e1))) ∈ [int]Eη:δ1↔δ2

(γ̂1(δ̂1(e2)), γ̂2(δ̂2(e2))) ∈ [τ]Eη:δ1↔δ2

(γ̂1(δ̂1(e3)), γ̂2(δ̂2(e3))) ∈ [τ]Eη:δ1↔δ2

From this we get that γ̂1(δ̂1(e1)) ' γ̂2(δ̂2(e1)). Then if γ̂1(δ̂1(e1)) doesn’t terminate, then neither
does γ̂2(δ̂2(e1)), and by rule Eifz1 neither does γ̂1(δ̂1(ifz(e1, e2, e3))) nor γ̂2(δ̂2(ifz(e1, e2, e3))), so
the result holds in that case. If γ̂1(δ̂1(e1)) ↓, then also γ̂2(δ̂2(e1)) ↓, so there exist some n, n′ such
that γ̂1(δ̂1(e1)) 7→∗ n and γ̂2(δ̂2(e1)) 7→∗ n′ such that (n, n′) ∈ [int]η:δ1↔δ2 . However, this implies
that n = n′ by the definition of [int]η:δ1↔δ2 .

If n = 0, then by rule Eifz2 we know that both

ifz(γ̂1(δ̂1(e1)), γ̂1(δ̂1(e2)), γ̂1(δ̂1(e3))))) 7→∗ γ̂1(δ̂1(e2))

ifz(γ̂2(δ̂2(e1)), γ̂2(δ̂2(e2)), γ̂2(δ̂2(e3))))) 7→∗ γ̂2(δ̂2(e2))

Then since we know by induction that (γ̂1(δ̂1(e2)), γ̂2(δ̂2(e2))) ∈ [τ]Eη:δ1↔δ2 , it clearly follows by
Corollary 7.5 that

(γ̂1(δ̂1(ifz(e1, e2, e3))), γ̂2(δ̂2(ifz(e1, e2, e3))) ∈ [τ]Eη:δ1↔δ2

We can do similarly in the case where n 6= 0 except with e3 instead of e2, which gets us the desired
result.

Case for Tfun
Assume that ∆; Γ ` fun g(x : τ1).e : τ1 → τ2 and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. We need to show that

(γ̂1(δ̂1(fun g(x : τ1).e)), γ̂2(δ̂2(fun g(x : τ1).e))) ∈ [τ1 → τ2]
E
η:δ1↔δ2

which is equivalent to showing

(fun g(x : τ1).γ̂1(δ̂1(e)), fun g(x : τ1).γ̂2(δ̂2(e))) ∈ [τ1 → τ2]
E
η:δ1↔δ2

Since this is a value already, we can just show that it is in [τ1 → τ2]η:δ1↔δ2 as opposed to

[τ1 → τ2]
E
η:δ1↔δ2 , since the former implies the latter.

Define f1 = fun g(x : τ1).γ̂1(δ̂1(e)) and f2 = fun g(x : τ1).γ̂2(δ̂2(e)). We will prove by induction
that for all i, (f i1, f

i
2) ∈ [τ1 → τ2]η:δ1↔δ2 . In the following, assume that (v1, v2) ∈ [τ1]η:δ1↔δ2 .

When i = 0, we want to show that (f0
1 v1, f

0
2 v2) ∈ [τ2]

E
η:δ1↔δ2 from which the result follows by

definition. By definition, neither terminate, thus we trivially have that (f0
1 v1, f

0
2 v2) ∈ [τ2]

E
η:δ1↔δ2

since f0
1 v1 ' f0

2 v2 and neither steps to a value.

44

Now suppose that we know that (f i1, f
i
2) ∈ [τ1 → τ2]η:δ1↔δ2 . We want to show that

(f i+1
1 v1, f

i+1
2 v2) ∈ [τ2]

E
η:δ1↔δ2 . By using Corollary 7.5, we just have to show that

([f i+1
1 /g][v1/x][f i1/f]γ̂1(δ̂1(e)), [f i+1

2 /g][v2/x][f i2/f]γ̂2(δ̂2(e))) ∈ [τ2]
E
η:δ1↔δ2

Since the inner substitution for f was done in the definition of f i+1
1 and f i+1

2 , the outer substitution
has nothing to substitute for and so we can remove it like so:

([v1/x][f i1/g]γ̂1(δ̂1(e)), [v2/x][f i2/g]γ̂2(δ̂2(e))) ∈ [τ2]
E
η:δ1↔δ2

Now define γ′1 = γ1 ⊗ g ↪→ f i1 ⊗ x ↪→ v1 and γ′2 = γ2 ⊗ g ↪→ f i2 ⊗ x ↪→ v2. By the inner induction
on n, we know that (f i1, f

i
2) ∈ [τ1 → τ2]η:δ1↔δ2 and so (f i1, f

i
2) ∈ [τ1 → τ2]η:δ1↔δ2 . Similarly,

we also know that (v1, v2) ∈ [τ1]η:δ1↔δ2 . Thus, for Γ′ = Γ, x : τ1, g : τ1 → τ2, we know that
γ′1 ∼Γ′ γ′2[η : δ1 ↔ δ2]. But by our outer induction, we get that ∆; Γ ` e ∼ e : τ2, which tells us

that (γ̂′1(δ̂1(e)), γ̂′2(δ̂′2(e))) ∈ [τ2]
E
η:δ1↔δ2 , which is exactly what we wanted to show.

Now that we know that (f i1, f
i
2) ∈ [τ1 → τ2]η:δ1↔δ2 for all i, this is equivalent to saying that

(wf1[i], wf2[i]) ∈ [τ1 → τ2]η:δ1↔δ2 for all i. We know by Corollary 8.2 that [τ1 → τ2]η:δ1↔δ2 is

admissible, so by using the property of admissibility with e = w we get that (wf1[w], wf2[w]) ∈
[τ1 → τ2]η:δ1↔δ2 or equivalently that (f1, f2) ∈ [τ1 → τ2]η:δ1↔δ2 , which is what we wanted to show.

Case for Tapp
Assume that ∆; Γ ` e1 e2 : τ2 and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. We need to show that

(γ̂1(δ̂1(e1 e2)), γ̂2(δ̂2(e1 e2))) ∈ [τ2]
E
η:δ1↔δ2

which is equivalent to showing that

(γ̂1(δ̂1(e1)) γ̂1(δ̂1(e2)), γ̂2(δ̂2(e1)) γ̂2(δ̂2(e2))) ∈ [τ2]
E
η:δ1↔δ2

By induction we get that ∆; Γ ` e1 ∼ e1 : τ1 → τ2 and ∆; Γ ` e2 ∼ e2 : τ1, which tell us that

(γ̂1(δ̂1(e1)), γ̂2(δ̂2(e1))) ∈ [τ1 → τ2]
E
η:δ1↔δ2

(γ̂1(δ̂1(e2)), γ̂2(δ̂2(e2))) ∈ [τ1]
E
η:δ1↔δ2

This implies that γ̂1(δ̂1(e1)) ' γ̂2(δ̂2(e1)). Thus if γ̂1(δ̂1(e1)) does not terminate, then neither will
γ̂2(δ̂2(e1)) by the above, and thus neither γ̂1(δ̂1(e1 e2)) nor γ̂2(δ̂2(e1 e2)) will by rule Eapp1. The
same can be said about γ̂1(δ̂1(e2)) and γ̂2(δ̂2(e2)). Thus the result holds in these cases, so we just
have to show it holds when all components terminate.

Now suppose that γ̂1(δ̂1(e1)) 7→∗ f1 and γ̂2(δ̂2(e1)) 7→∗ f2 for some f1, f2, as well as γ̂1(δ̂1(e2)) 7→∗ v1

and γ̂2(δ̂2(e2)) 7→∗ v2 for some v, v′. But by the definition of the extension of the logical relation
to terms, we know from the above that (f1, f2) ∈ [τ1 → τ2]η:δ1↔δ2 and similarly that (v1, v2) ∈
[τ1]η:δ1↔δ2 . Then we know that (f1 v1, f2 v2) ∈ [τ2]

E
η:δ1↔δ2 by the definition of the logical type

relation over arrow types. But then γ̂1(δ̂1(e1 e2)) 7→∗ f1 v1 and γ̂2(δ̂2(e1 e2)) 7→∗ f2 v2 by our
assumptions above and the Eapp rules. From this we get that

(γ̂1(δ̂1(e1 e2), γ̂2(δ̂2(e1 e2)) ∈ [τ2]
E
η:δ1↔δ2

as desired, by application of Corollary 7.5.

45

Case for Tccfun
Assume that ∆; Γ ` f̂un g(x : τ1).e : τ1 ⇒ τ2 and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. We need to show that

(γ̂1(δ̂1(f̂un g(x : τ1).e)), γ̂2(δ̂2(f̂un g(x : τ1).e))) ∈ [τ1 ⇒ τ2]
E
η:δ1↔δ2

which is equivalent to showing

(f̂un g(x : τ1).γ̂1(δ̂1(e)), f̂un g(x : τ1).γ̂2(δ̂2(e))) ∈ [τ1 ⇒ τ2]
E
η:δ1↔δ2

Since this is a value already, we can just show that it is in [τ1 ⇒ τ2]η:δ1↔δ2 as opposed to

[τ1 ⇒ τ2]
E
η:δ1↔δ2 , since the former implies the latter.

Define f1 = f̂un g(x : τ1).γ̂1(δ̂1(e)) and f2 = f̂un g(x : τ1).γ̂2(δ̂2(e)). We will prove by induction
that for all i, (f i1, f

i
2) ∈ [τ1 ⇒ τ2]η:δ1↔δ2 . In the following, assume that (v1, v2) ∈ [τ1]η:δ1↔δ2 .

When i = 0, we want to show that (f0
1̂v1, f

0
2̂v2) ∈ [τ2]

E
η:δ1↔δ2 from which the result follows by

definition. By definition, neither terminate, thus we trivially have that (f0
1̂v1, f

0
2̂v2) ∈ [τ2]

E
η:δ1↔δ2

since f0
1̂v1 ' f0

2̂v2 and neither steps to a value.

Now suppose that we know that (f i1, f
i
2) ∈ [τ1 ⇒ τ2]η:δ1↔δ2 . We want to show that

(f i+1
1 ̂v1, f

i+1
2 ̂v2) ∈ [τ2]

E
η:δ1↔δ2 . By using Corollary 7.5, we just have to show that

([f i+1
1 /g][v1/x][f i1/f]γ̂1(δ̂1(e)), [f i+1

2 /g][v2/x][f i2/f]γ̂2(δ̂2(e))) ∈ [τ2]
E
η:δ1↔δ2

Since the inner substitution for f was done in the definition of f i+1
1 and f i+1

2 , the outer substitution
has nothing to substitute for and so we can remove it like so:

([v1/x][f i1/g]γ̂1(δ̂1(e)), [v2/x][f i2/g]γ̂2(δ̂2(e))) ∈ [τ2]
E
η:δ1↔δ2

Now define γ′1 = g ↪→ f i1 ⊗ x ↪→ v1 and γ′2 = g ↪→ f i2 ⊗ x ↪→ v2. By the inner induction
on n, we know that (f i1, f

i
2) ∈ [τ1 ⇒ τ2]η:δ1↔δ2 and so (f i1, f

i
2) ∈ [τ1 ⇒ τ2]η:δ1↔δ2 . Similarly,

we also know that (v1, v2) ∈ [τ1]η:δ1↔δ2 . Thus, for Γ′ = g : τ1 ⇒ τ2, x : τ1, we know that
γ′1 ∼Γ′ γ′2[η : δ1 ↔ δ2]. But by our outer induction, we get that ∆; Γ′ ` e ∼ e : τ2, which tells us

that (γ̂′1(δ̂1(e)), γ̂′2(δ̂′2(e))) ∈ [τ2]
E
η:δ1↔δ2 , which is exactly what we wanted to show, since the other

substitutions don’t have any effect.

Now that we know that (f i1, f
i
2) ∈ [τ1 ⇒ τ2]η:δ1↔δ2 for all i, this is equivalent to saying that

(wf1[i], wf2[i]) ∈ [τ1 ⇒ τ2]η:δ1↔δ2 for all i. We know by Corollary 8.2 that [τ1 ⇒ τ2]η:δ1↔δ2 is

admissible, so by using the property of admissibility with e = w we get that (wf1[w], wf2[w]) ∈
[τ1 ⇒ τ2]η:δ1↔δ2 or equivalently that (f1, f2) ∈ [τ1 ⇒ τ2]η:δ1↔δ2 , which is what we wanted to show.

Case for Tccapp
Assume that ∆; Γ ` e1̂e2 : τ2 and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. We need to show that

(γ̂1(δ̂1(e1̂e2)), γ̂2(δ̂2(e1̂e2))) ∈ [τ2]
E
η:δ1↔δ2

which is equivalent to showing that

(γ̂1(δ̂1(e1))̂γ̂1(δ̂1(e2)), γ̂2(δ̂2(e1))̂γ̂2(δ̂2(e2))) ∈ [τ2]
E
η:δ1↔δ2

By induction we get that ∆; Γ ` e1 ∼ e1 : τ1 ⇒ τ2 and ∆; Γ ` e2 ∼ e2 : τ1, which tell us that

(γ̂1(δ̂1(e1)), γ̂2(δ̂2(e1))) ∈ [τ1 ⇒ τ2]
E
η:δ1↔δ2

46

(γ̂1(δ̂1(e2)), γ̂2(δ̂2(e2))) ∈ [τ1]
E
η:δ1↔δ2

This implies that γ̂1(δ̂1(e1)) ' γ̂2(δ̂2(e1)). Thus if γ̂1(δ̂1(e1)) does not terminate, then neither will
γ̂2(δ̂2(e1)) by the above, and thus neither γ̂1(δ̂1(e1̂e2)) nor γ̂2(δ̂2(e1̂e2)) will by rule Eccapp1. The
same can be said about γ̂1(δ̂1(e2)) and γ̂2(δ̂2(e2)). Thus the result holds in these cases, so we just
have to show it holds when all components terminate.

Now suppose that γ̂1(δ̂1(e1)) 7→∗ f1 and γ̂2(δ̂2(e1)) 7→∗ f2 for some f1, f2, as well as γ̂1(δ̂1(e2)) 7→∗
v1 and γ̂2(δ̂2(e2)) 7→∗ v2 for some v, v′. But by the definition of the extension of the logical
relation to terms, we know from the above that (f1, f2) ∈ [τ1 ⇒ τ2]η:δ1↔δ2 and similarly that

(v1, v2) ∈ [τ1]η:δ1↔δ2 . Then we know that (f1̂v1, f2̂v2) ∈ [τ2]
E
η:δ1↔δ2 by the definition of the

logical type relation over closure-converted arrow types. But then γ̂1(δ̂1(e1̂e2)) 7→∗ f1̂v1 and
γ̂2(δ̂2(e1̂e2)) 7→∗ f2̂v2 by our assumptions above and the Eccapp rules. From this we get that

(γ̂1(δ̂1(e1̂e2), γ̂2(δ̂2(e1̂e2)) ∈ [τ2]
E
η:δ1↔δ2

as desired, by application of Corollary 7.5.

Case for Tpair
Assume that ∆; Γ ` 〈e1, e2〉 : τ1 × τ2 and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. We need to show that

(γ̂1(δ̂1(〈e1, e2〉)), γ̂2(δ̂2(〈e1, e2〉))) ∈ [τ1 × τ2]
E
η:δ1↔δ2

this is equivalent to showing that

(〈γ̂1(δ̂1(e1)), γ̂1(δ̂1(e2))〉, 〈γ̂2(δ̂2(e1)), γ̂2(δ̂2(e2))〉) ∈ [τ1 × τ2]
E
η:δ1↔δ2

By induction we get that ∆; Γ ` e1 ∼ e1 : τ1 and ∆; Γ ` e2 ∼ e2 : τ2, which tell us that

(γ̂1(δ̂1(e1)), γ̂2(δ̂2(e1))) ∈ [τ1]
E
η:δ1↔δ2

(γ̂1(δ̂1(e2)), γ̂2(δ̂2(e2))) ∈ [τ2]
E
η:δ1↔δ2

Then based on the Epair rules, clearly 〈γ̂1(δ̂1(e1)), γ̂1(δ̂1(e2))〉 ' 〈γ̂2(δ̂2(e1)), γ̂2(δ̂2(e2))〉 since
the same is true for the two projections. Suppose that γ̂1(δ̂1(e1)) 7→∗ v1, γ̂1(δ̂1(e2)) 7→∗ v2,
γ̂2(δ̂2(e1)) 7→∗ v′1, and γ̂2(δ̂2(e2)) 7→∗ v′2 for some v1, v2, v

′
1, v
′
2. Then since (v1, v

′
1) ∈ [τ1]η:δ1↔δ2

and (v2, v
′
2) ∈ [τ2]η:δ1↔δ2 by induction, we know that (〈v1, v2〉, 〈v′1, v′2〉) ∈ [τ1 × τ2]η:δ1↔δ2 as the

values are the corresponding projections (which we can do by applying Corollary 7.5). But then
again by Corollary 7.5 and using the Epair rules, we get that

(γ̂1(δ̂1(〈e1, e2〉)), γ̂2(δ̂2(〈e1, e2〉))) ∈ [τ1 × τ2]
E
η:δ1↔δ2

as desired.

Case for Tproj
Assume that ∆; Γ ` πie : τi and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. We need to show that

(γ̂1(δ̂1(πie)), γ̂2(δ̂2(πie))) ∈ [τi]
E
η:δ1↔δ2

this is equivalent to showing that

(πiγ̂1(δ̂1(e)), πiγ̂2(δ̂2(e))) ∈ [τi]
E
η:δ1↔δ2

47

By induction we get that ∆; Γ ` e ∼ e : τ1 × τ2 and (γ̂1(δ̂1(e)), γ̂2(δ̂2(e))) ∈ [τ1 × τ2]
E
η:δ1↔δ2 .

Thus γ̂1(δ̂1(e)) ' γ̂2(δ̂2(e)), which implies that γ̂1(δ̂1(πie)) ' γ̂2(δ̂2(πie)) by rule Eproj1. Also, if
γ̂1(δ̂1(e)) 7→∗ v1 and γ̂2(δ̂2(e)) 7→∗ v2 for some v1, v2, then we know (v1, v2) ∈ [τ1 × τ2]η:δ1↔δ2 by
induction, and thus by definition (πiv1, πiv2) ∈ [τi]η:δ1↔δ2 . Then we can apply Corollary 7.5 to get

that (πiγ̂1(δ̂1(e)), πiγ̂2(δ̂2(e))) ∈ [τi]
E
η:δ1↔δ2 , as desired.

Case for Ttlam
Assume that ∆; Γ ` Λα.e : ∀α.τ and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. We want to show that

(γ̂1(δ̂1(Λα.e)), γ̂2(δ̂2(Λα.e))) ∈ [∀α.τ]Eη:δ1↔δ2

To do this, we assume that τ1 type, τ2 type, and R ∈ Val(τ1)× Val(τ2) such that R = R ST. Define
η′ = η ⊗ α ↪→ R , δ′1 = δ1 ⊗ α ↪→ τ1, and δ′2 = δ2 ⊗ α ↪→ τ2. We want to show that

(γ̂1(δ̂1(Λα.e))[τ1], γ̂2(δ̂2(Λα.e))[τ2]) ∈ [∀α.τ]Eη′:δ′1↔δ′2
this is equivalent to

((Λα.γ̂1(δ̂1(e)))[τ1], (Λα.γ̂2(δ̂2(e)))[τ2]) ∈ [∀α.τ]Eη′:δ′1↔δ′2
as we can alpha-vary α to be a variable not included in the substitutions. By Corollary 7.5, we can
equivalently show that

([τ1/α]γ̂1(δ̂1(e)), [τ2/α]γ̂2(δ̂2(e))) ∈ [∀α.τ]Eη′:δ′1↔δ′2

By induction we know that ∆, α; Γ ` e ∼ e : τ . Since R = R ST, η′ : δ′1 ↔ δ′2 holds, and we also know
that γ1 ∼Γ γ2[η′ : δ′1 ↔ δ′2] since the added variable α does not appear in any of the substituted
terms. By definition of logical equivalance, this means we know that

(γ̂1(δ̂′1(e)), γ̂2(δ̂′2(e))) ∈ [∀α.τ]Eη′:δ′1↔δ′2
which is equivalent to the desired result above by just separating out the substitutions for α.

Case for Ttapp
Assume that ∆; Γ ` e[τ1] : τ and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. We want to show that

(γ̂1(δ̂1(e[τ1])), γ̂2(δ̂2(e[τ1]))) ∈ [τ]Eη:δ1↔δ2

We know that ∆; Γ ` e : ∀α.τ ′, where τ = [τ1/α]τ ′. By induction, we get that ∆; Γ ` e ∼ e : ∀α.τ ,
which tells us that

(γ̂1(δ̂1(e)), γ̂2(δ̂2(e))) ∈ [∀α.τ ′]Eη:δ1↔δ2

This tells us that γ̂1(δ̂1(e)) ' γ̂2(δ̂2(e)), and if γ̂1(δ̂1(e)) doesn’t terminate, than neither does
γ̂1(δ̂1(e[τ1])), and similarly if γ̂2(δ̂2(e)) doesn’t terminate, than neither does γ̂2(δ̂2(e[τ1])). Thus if
either γ̂1(δ̂1(e)) or γ̂2(δ̂2(e)) doesn’t terminate, then neither γ̂1(δ̂1(e[τ ′])) nor γ̂2(δ̂2(e[τ1])) will, so
the desired result holds in this case.

Now suppose that γ̂1(δ̂1(e[τ1])) 7→∗ v1 and γ̂2(δ̂2(e[τ1])) 7→∗ v2 for some v1, v2 (we know that if one
terminates, the other must as well). From what we got by induction, we know by the definition of
the extension of the logical relation to terms that (v1, v2) ∈ [∀α.τ ′]η:δ1↔δ2 . Define R = [τ1]η:δ1↔δ2 ,
η′ = η ⊗ α ↪→ R , δ′1 = δ1 ⊗ α ↪→ δ1(τ1), and δ′2 = δ2 ⊗ α ↪→ δ2(τ1). By the definition of the logical
relation we know that

(γ̂1(δ̂1(e[τ1])), γ̂2(δ̂2(e[τ1]))) ∈ [τ ′]Eη′:δ′1↔δ′2

48

By Lemma 8.6, this is equivalent to saying that

(γ̂1(δ̂1(e[τ1])), γ̂2(δ̂2(e[τ1]))) ∈ [[τ1/α]τ ′]Eη:δ1↔δ2

which is equivalent to what we wanted to show, since τ = [τ1/α]τ ′.

Case for Tpack
Assume that ∆; Γ ` pack[τ ′, e] as∃α.τ : ∃α.τ and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. We want to show that

(γ̂1(δ̂1(pack[τ ′, e] as ∃α.τ)), γ̂2(δ̂2(pack[τ ′, e] as ∃α.τ))) ∈ [∃α.τ]Eη:δ1↔δ2

or equivalently

(pack[δ̂1(τ ′), γ̂1(δ̂1(e))] as δ̂1(∃α.τ))), pack[δ̂2(τ ′), γ̂2(δ̂2(e))] as δ̂2(∃α.τ)))) ∈ [∃α.τ]Eη:δ1↔δ2

Since we know what the value is, we know what the type in the existential is. Define R = [τ ′]η:δ1↔δ2 ,
which is ST-closed by Lemma 8.1, as well as η′ = η⊗α ↪→ R , δ′1 = δ1⊗α ↪→ τ1, and δ′2 = δ2⊗α ↪→ τ1.
Then by the definition of the logical relation we can just show that

(γ̂1(δ̂1(e)), γ̂2(δ̂2(e))) ∈ [τ]η′:δ′1↔δ′2

But by induction we know that ∆, α; Γ ` e ∼ e : τ , which gets us the result above.

Case for Tunpack
Assume that ∆; Γ ` unpack[α, x] = e1 in e2 : τ and γ1 ∼Γ γ2[η : δ1 ↔ δ2]. We want to show that

(γ̂1(δ̂1(unpack[α, x] = e1 in e2)), γ̂2(δ̂2(unpack[α, x] = e1 in e2))) ∈ [τ]Eη:δ1↔δ2

which, since we can assume that α does not occur in ∆ and x does not occur in Γ, is equivalent to
γ1 ∼Γ γ2[η : δ1 ↔ δ2]. We want to show that

(unpack[α, x] = γ̂1(δ̂1(e1)) in γ̂1(δ̂1(e2)), unpack[α, x] = γ̂2(δ̂2(e1)) in γ̂2(δ̂2(e2))) ∈ [τ]Eη:δ1↔δ2

By induction, we get that ∆; Γ ` e1 ∼ e1 : ∃α.τ ′ and ∆, α; Γ, x : τ ′ ` e2 ∼ e2 : τ , which tells us that

(γ̂1(δ̂1(e1)), γ̂2(δ̂2(e1))) ∈ [∃α.τ ′]Eη:δ1↔δ2

This tells us that γ̂1(δ̂1(e1)) ' γ̂2(δ̂2(e1)), and if γ̂1(δ̂1(e1)) doesn’t terminate, than neither does
γ̂1(δ̂1(unpack[α, x] = e1 in e2)), and similarly if γ̂2(δ̂2(e1)) doesn’t terminate, than neither does
γ̂2(δ̂2(unpack[α, x] = e1 in e2)). Thus if either γ̂1(δ̂1(e1)) or γ̂2(δ̂2(e1)) doesn’t terminate, then
neither γ̂1(δ̂1(unpack[α, x] = e1 in e2)) nor γ̂2(δ̂2(unpack[α, x] = e1 in e2)) will, so the desired result
holds in this case.

Otherwise, we know that both γ̂1(δ̂1(e1)) ↓ and γ̂2(δ̂2(e1)) ↓, so thus there exist some v1, v2 such
that γ̂1(δ̂1(e1)) 7→∗ v1 and γ̂2(δ̂2(e1)) 7→∗ v2. By the definition of the extension of the logical relation
to terms, we know that (v1, v2) ∈ [∃α.τ ′]η:δ1↔δ2 .

We will need to use Lemma 7.7 to finish this case. First we will define R to be [∃α.τ ′]η:δ1↔δ2 ,
except without the additional ST-closure applied to it that it normally has. Also define
Q = [τ]η:δ1↔δ2 , which is ST-closed by Lemma 8.1, and define the functions

g1 = λy : ∃α.τ ′. unpack[α, x] = y in γ̂1(δ̂1(e2))

49

g2 = λy : ∃α.τ ′. unpack[α, x] = y in γ̂2(δ̂2(e2))

Assuming that (v′1, v
′
2) ∈ R , for Lemma 7.7 we want to show that (g1 v

′
1, g2 v

′
2) ∈ Q E. By

Corollary 7.5, this is equivalent to showing that

(unpack[α, x] = v′1 in γ̂1(δ̂1(e2)), unpack[α, x] = v′2 in γ̂2(δ̂2(e2))) ∈ Q E

By the definition of R , which is from the definition of the logical relation, we know that there
exist τ1 type, τ2 type, and an ST-closed relation R ′ ⊆ Val(τ1)× Val(τ2) such that (e′1, e

′
2) ∈

[τ ′]η′:δ′1↔δ′2
where v′1 = pack[τ1, e

′
1] as∃α.τ ′, v′2 = pack[τ2, e

′
2] as ∃α.τ ′, η′ = η ⊗ α ↪→ R ′,

δ′1 = δ1 ⊗ α ↪→ τ1, and δ′2 = δ2 ⊗ α ↪→ τ2.

Therefore we know that

∃α.τ ′. unpack[α, x] = v′1 in γ̂1(δ̂1(e2)) 7→ [τ1/α][e′1/x]γ̂1(δ̂1(e2)) = γ̂′1(δ̂′1(e2))

∃α.τ ′. unpack[α, x] = v′2 in γ̂2(δ̂2(e2)) 7→ [τ2/α][e′2/x]γ̂2(δ̂2(e2)) = γ̂′2(δ̂′2(e2))

where γ′1 = γ1⊗x ↪→ e′1 and γ′2 = γ2⊗x ↪→ e′2. We know that γ′1 ∼Γ,x:τ ′ γ
′
2[η′ : δ′1 ↔ δ′2] since

(e′1, e
′
2) ∈ [τ ′]η′:δ′1↔δ′2

from above. Therefore, by induction we know that

(γ̂′1(δ̂′1(e2)), γ̂′2(δ̂′2(e2))) ∈ [τ]Eη′:δ′1↔δ′2

We know that ∆ ` τ , so τ does not contain α. Thus τ = [τ ′′/α]τ for any τ ′′. Thus we can
apply Lemma 8.5, which gives us that

(γ̂′1(δ̂′1(e2)), γ̂′2(δ̂′2(e2))) ∈ [τ]Eη:δ1↔δ2

Therefore, making use of Corollary 7.5, we have shown that (g1 v
′
1, g2 v

′
2) ∈ Q E, as desired.

Then by Lemma 7.7, we now know that for R , Q , g1 and g2 defined above, if (v1, v2) ∈ R ST then
(g1 v1, g2 v2) ∈ Q E. We already know that (v1, v2) ∈ [∃α.τ ′] = R ST by definition, so therefore
(g1 v1, g2 v2) ∈ Q E. By Lemma 7.5, this is equivalent to saying that

(unpack[α, x] = v1 in γ̂1(δ̂1(e2)), unpack[α, x] = v2 in γ̂2(δ̂2(e2))) ∈ [τ]Eη:δ1↔δ2

Since we know that γ̂1(δ̂1(e1)) 7→∗ v1 and γ̂2(δ̂2(e1)) 7→∗ v2, by rule Eunpack1 we can again apply
Lemma 7.5 to get the desired result, that

(γ̂1(δ̂1(unpack[α, x] = e1 in e2)), γ̂2(δ̂2(unpack[α, x] = e1 in e2))) ∈ [τ]Eη:δ1↔δ2

50

9.2 Congruence

Lemma 9.2. If C : (∆; Γ.τ) (∆′; Γ′.τ ′) and ∆; Γ ` e1 ∼ e2 : τ , then ∆′; Γ′ ` C{e1} ∼ C{e2} : τ ′.

Proof. First, define the function f = λx : τ.C{x}. By our definition of contexts, clearly ∆′; Γ′ ` f :
τ → τ ′. Assume that γ ∼Γ′ γ′[η : δ1 ↔ δ2]. We want to show that

(γ̂1(δ̂1(C{e1})), γ̂2(δ̂2(C{e2}))) ∈ [τ ′]Eη:δ1↔δ2

but by our definition of f and using Corollary 7.5, this is the same as showing that

(γ̂1(δ̂1(f e1)), γ̂2(δ̂2(f e2))) ∈ [τ ′]Eη:δ1↔δ2

which is also the same as showing that

(γ̂1(δ̂1(f)) γ̂1(δ̂1(e1)), γ̂2(δ̂2(f)) γ̂2(δ̂2(e2))) ∈ [τ ′]Eη:δ1↔δ2

By Theorem 9.1, we know that

(γ̂1(δ̂1(f)), γ̂2(δ̂2(f))) ∈ [τ → τ ′]Eη:δ1↔δ2

and thus clearly (γ̂1(δ̂1(f)), γ̂2(δ̂2(f))) ∈ [τ → τ ′]η:δ1↔δ2 since f is a value. By assumption, we

know that (γ̂1(δ̂1(e1)), γ̂2(δ̂2(e2))) ∈ [τ]Eη:δ1↔δ2 . We consider two cases:

If γ̂1(δ̂1(e1)) does not terminate, then neither does γ̂2(δ̂2(e2)). Clearly, then, neither do
γ̂1(δ̂1(f)) γ̂1(δ̂1(e1)) nor γ̂2(δ̂2(f)) γ̂2(δ̂2(e2)), by rule Eapp2. This implies the desired result.

If γ̂1(δ̂1(e1)) ↓, then also γ̂2(δ̂2(e2)) ↓. This means that there exist some v1, v2 such that
γ̂1(δ̂1(e1)) 7→∗ v1 and γ̂2(δ̂2(e2)) 7→∗ v2. Also, since we know that (γ̂1(δ̂1(e1)), γ̂2(δ̂2(e2))) ∈
[τ]Eη:δ1↔δ2 , we know that (v1, v2) ∈ [τ]η:δ1↔δ2 . However, by the definition of [τ → τ ′]η:δ1↔δ2 ,

this means that (γ̂1(δ̂1(f)) v1, γ̂2(δ̂2(f)) v2) ∈ [τ ′]Eη:δ1↔δ2 . We can then apply Corollary 7.5 to get
that

(γ̂1(δ̂1(f)) γ̂1(δ̂1(e1)), γ̂2(δ̂2(f)) γ̂2(δ̂2(e2))) ∈ [τ ′]Eη:δ1↔δ2

which is what we wanted to show.

9.3 Respect for Contextual Equivalence

Lemma 9.3. Suppose that (e1, e2) ∈ [τ]Eη:δ1↔δ2 . If e′1
∼=δ̂1(τ)

e1 and e′2
∼=δ̂2(τ)

e2, then (e′1, e
′
2) ∈

[τ]Eη:δ1↔δ2 .

Proof. We want to show that (e′1, e
′
2) ∈ [τ]Eη:δ1↔δ2 . We first have to show that e′1 ' e′2. By

Lemma 5.1 and the assumption that e′1
∼=δ̂1(τ)

e1, we get that e′1 ' e1. Similarly, we get that

e2 ' e′2. We also get that e1 ' e2 by the assumption that (e1, e2) ∈ [τ]Eη:δ1↔δ2 . Thus by transitivity
of Kleene equivalence, we have that e′1 ' e′2, as desired. Now we just have to show that if e′1 7→∗ v′1
and e′2 7→∗ v′2 for some v′1, v

′
2, then (v′1, v

′
2) ∈ [τ]η:δ1↔δ2 . By the above it must then be the case that

e1 7→∗ v1 and e2 7→∗ v2 for some v1, v2 where (v1, v2) ∈ [τ]η:δ1↔δ2 .

Suppose (f1, f2) ∈ [τ]Sη:δ1↔δ2 . By Lemma 5.7, we know that v′1
∼=δ̂1(τ)

e′1 and e1
∼=δ̂1(τ)

v1, and

thus by transitivity v′1
∼=δ̂1(τ)

v1. Using the context C1 = f1 o, we then get by Corollary 5.2 that

C1{v′1} ' C{v1}, or equivalently f1 v
′
1 ' f1 v1. By a similar method using the context C2 = f2 o,

51

we get that f2 v2 ' f2 v
′
2. Also, by the definition of the S operation, we know that f1 v1 ' f2 v2

since (v1, v2) ∈ [τ]η:δ1↔δ2 . Then by transitivity we get that f1 v
′
1 ' f2 v

′
2. However, since f1 and

f2 were arbitrary, this holds for all f1, f2, and thus we have that (v′1, v
′
2) ∈ [τ]STη:δ1↔δ2 by definition.

However, by Lemma 8.1, this means that (v′1, v
′
2) ∈ [τ]η:δ1↔δ2 , as desired.

9.4 Logical Equivalence implies Contextual Equivalence

Theorem 9.4. If ∆; Γ ` e1 ∼ e2 : τ , then ∆; Γ ` e1
∼= e2 : τ .

Proof. Assume that ∆; Γ ` e1 ∼ e2 : τ . Let C : (∆; Γ . τ) (· . int) be a program context.
By Lemma 9.2, we know that · ` C{e1} ∼ C{e2} : int. Since the context is empty, we get that
(C{e1}, C{e2}) ∈ [int]E, which by definition implies that C{e1} ' C{e2}. Then by the definition of
contextual equivalence, ∆; Γ ` e1

∼= e2 : τ .

9.5 Contextual Equivalence implies Logical Equivalence

Theorem 9.5. If ∆; Γ ` e1
∼= e2 : τ , then ∆; Γ ` e1 ∼ e2 : τ .

Proof. Assume that ∆; Γ ` e1
∼= e2 : τ and that γ1 ∼Γ γ2[η : δ1 ↔ δ2]. We want to show that

(γ̂1(δ̂1(e1)), γ̂2(δ̂2(e1))) ∈ [τ]Eη:δ1↔δ2

We know that ∆; Γ ` e1
∼= e1 : τ . By repeated application of Lemma 5.3 to ∆; Γ ` e1

∼= e2 : τ , we
get that

·; δ̂2(Γ) ` δ̂2(e1) ∼= δ̂2(e2) : δ̂2(τ)

Then define γ′2 such that γ′2(x) = δ̂2(γ2(x)) for all x ∈ Γ. Clearly then γ′2 : δ̂2(Γ), so by Lemma 5.4,
we get that

δ̂2(γ̂′2(e1)) ∼=δ̂2(τ)
δ̂2(γ̂′2(e2))

which is equivalent to
γ̂2(δ̂2(e1)) ∼=δ̂2(τ)

γ̂2(δ̂2(e2))

By Lemma 9.1, we know that ∆; Γ ` e1
∼= e1 : τ , which tells us that (γ̂1(δ̂1(e1)), γ̂2(δ̂2(e1))) ∈

[τ]Eη:δ1↔δ2 . The result follows from this and the above derivation by applying Lemma 9.3.

Theorem 9.6. ∆; Γ ` e1
∼= e2 : τ iff ∆; Γ ` e1 ∼ e2 : τ .

Proof. By Theorem 9.4 and Theorem 9.5.

52

10 Closure Conversion

10.1 Translation

We define the standard closure conversion type translation |τ | and term translation ∆; Γ `S e :
τ ē.

The type translation is defined as follows:

|α| = α

|unit| = unit

|int| = int

|τ1 × τ2| = |τ1| × |τ2|
|τ1 → τ2| = ∃α.((|τ1| × α)⇒ |τ2|)× α
|∀α.τ | = ∀α.|τ |
|∃α.τ | = ∃α.|τ |

We also define |Γ| by | · | = · and |Γ, x : τ | = |Γ|, x : |τ |
The term translation is defined as follows:

∆; Γ `S () : unit ()
Runit

Γ(x) = τ

∆; Γ `S x : τ x
Rvar

∆; Γ `S n : int n
Rint

∆; Γ `S e1 : int ē1 ∆; Γ `S e2 : int ē2

∆; Γ `S e1 p e2 : int ē1 p ē2
Rintop

∆; Γ `S e1 : int ē1 ∆; Γ `S e2 : τ ē2 ∆; Γ `S e3 : τ ē3

∆; Γ `S ifz(e1, e2, e3) : τ ifz(ē1, ē2, ē3)
Rifz

∆; Γ `S e1 : τ1 ē1 ∆; Γ `S e2 : τ2 ē2

∆; Γ `S 〈e1, e2〉 : τ1 × τ2 〈ē1, ē2〉
Rpair

∆; Γ `S e : τ1 × τ2 ē i ∈ {1, 2}
∆; Γ `S πie : τi πiē

Rproj

∆, α; Γ `S e : τ ē

∆; Γ `S Λα.e : ∀α.τ Λα.ē
Rtlam

∆; Γ `S e : ∀α.τ ē ∆ `S τ ′ type
∆; Γ `S e[τ ′] : [τ ′/α]τ ē[|τ ′|]

Rtapp

∆ `S τ ′ type ∆, α `S τ type ∆; Γ `S e : [τ ′/α]τ ē

∆; Γ `S pack[τ ′, e] as∃α.τ : ∃α.τ pack[|τ ′|, ē] as ∃α.|τ |
Rpack

∆; Γ `S e1 : ∃α.τ1 ē1 ∆, α; Γ, x : τ1 `S e2 : τ2 ē2 ∆ `S τ2 type

∆; Γ `S unpack[α, x] = e1 in e2 : τ2 unpack[α, x] = ē1 in ē2
Runpack

53

Γ = x1 : τ1, ..., xn : τn
∆; Γ, x : τ, f : τ → τ ′ `S e : τ ′ ē

∆ `S τ type
τenv = |τ1| × ...× |τn|

∆; Γ `S fun f(x : τ).e : τ → τ ′ pack[τenv,

〈(f̂un f(y : |τ | × τenv).[pack[τenv, 〈f, π2y〉] as |τ → τ ′|/f]
[π1y/x][π1π2y/x1]...[π1π2...π2y/xn−1][π2...π2y/xn]ē

), 〈x1, 〈...〈xn−1, xn〉...〉〉〉] as |τ → τ ′|

Rfun

∆; Γ `S e1 : τ → τ ′ ē1 ∆; Γ `S e2 : τ ē2

∆; Γ `S e1 e2 : τ ′ unpack[α, x] = ē1 in(π1x)̂〈ē2, π2x〉
Rapp

10.2 Fix vs. Recursive Functions

There is a reason that we didn’t use the general fix for recursion. Using fix instead of recurisve
functions results in problems when doing closure conversion. What follows is an example showing
the problem that arises when using fix instead of inherently recursive functions. First, the static
and dynamic rules for fix would be:

∆; Γ, x : τ ` e : τ

∆; Γ ` fix (x : τ).e : τ
Tfix

fix (x : τ).e 7→ [fix (x : τ).e/x]e
Efix

Now consider the term

fix (f : int→ int).λx : int.ifz(x, 0, f (x− 1))

This doesn’t really do anything interesting, but will demonstrate the problem. After closure con-
version, this translates to (assuming no context)

fix (f : int→ int). pack[int→ int, 〈λ̂y : int× (int→ int).ifz(π1y, 0, E), f〉

Where E = unpack[α, z] = π2y in(π1z)̂〈π1y − 1, π2z〉. Define the above to be F . Then this will
step to

pack[int→ int, 〈λ̂y : int× (int→ int).ifz(π1y, 0, E), F 〉

This is because the whole term gets substituted in for f due to the definition of fix . Call the
above F ′. However, for this to be a value, we need the inner term to also be a value (that is, the
term 〈λ̂y : int × (int → int).ifz(π1y, 0, E), F 〉). But we just said that F steps to F ′, so the
second term in the pair can make a step to F ′. But wait, we just said that F ′ can make a step,
as the second term in the pair in the pack can step. Thus this can step, and so on. Thus we
never actually get to a value, hence why fix was not used with closure conversion and recursive
functions were used instead.

54

11 Language Conversion

11.1 Over and Back

We define two functions in the combined language based on types in the languages. The first is
overτ : τ → |τ |, which takes terms in the source language and messes with them at the top level
to get their type to line up with the second language. The second is backτ : |τ | → τ , which does
the opposite, taking terms in the target language and messing with them at the top level to get
their type to line up with the source language. The two functions are mutually recursive and are
defined as follows:

overα = λx : α.x

overunit = λx : unit.x

overint = λx : int.x

overτ1×τ2 = λx : τ1 × τ2.〈overτ1π1x, overτ2π2x〉

overτ1→τ2 = λf : τ1 → τ2. pack[τ1 → τ2, 〈λ̂y : |τ1| × τ1 → τ2.

overτ2((π2y) (backτ1π1y)), f〉] as |τ1 → τ2|
over∀α.τ = λx : (∀α.τ).Λα.(overτ (x[α]))

over∃α.τ = λx : (∃α.τ). unpack[α, y] = x in(pack[α, overτ (y)] as |∃α.τ |)

backα = λx : α.x

backunit = λx : unit.x

backint = λx : int.x

backτ1×τ2 = λx : |τ1 × τ2|.〈backτ1π1x, backτ2π2x〉
backτ1→τ2 = λf : |τ1 → τ2|.λy : τ1. unpack[α, g] = f in backτ2((π1g)̂〈overτ1y, π2g〉)
back∀α.τ = λx : |∀α.τ |.Λα.(backτ (x[α]))

back∃α.τ = λx : |∃α.τ |. unpack[α, y] = x in(pack[α, backτ (y)] as∃α.τ)

11.2 Inverses

Lemma 11.1. For all ∆; Γ ` e : τ and ∆; |Γ| ` e′ : τ ,

∆; Γ ` backτ (overτ e) ∼= e : τ

∆; |Γ| ` overτ (backτ e
′) ∼= e′ : |τ |

Proof. By induction on the structure of τ .

If e does not halt, then clearly neither does backτ (overτ e), so clearly

∆; Γ ` backτ (overτ e) ∼= e : τ

If e ↓, then e 7→∗ v for some v val. Then by the cases below we’ll have that ∆; Γ ` backτ (overτ v) ∼=
v : τ from which the desired result will follow from Lemma 5.7. We can do similarly with e′, which
if it does not halt we have the desired result, and if instead e′ 7→∗ v′ for v′ val, we can apply the
below and Lemma 5.7 to get the desired result.

55

Case for τ = α
In this case we want to show that

∆; Γ ` backα(overα v) ∼= v : α

which is equivalent to
∆; Γ ` (λx : α.x) ((λx : α.x) v) ∼= v : α

However we know that by our assumption that ∆; Γ ` v : α and Lemma 5.7,

∆; Γ ` (λx : α.x) ((λx : α.x) v) ∼= (λx : α.x) v : α

∆; Γ ` (λx : α.x) v ∼= v : α

The desired result follows from transitivity. Since backα = overα, the reverse inverse is identical
in this case.

Case for τ = unit

In this case we want to show that

∆; Γ ` backunit(overunit v) ∼= v : unit

which is equivalent to

∆; Γ ` (λx : unit.x) ((λx : unit.x) v) ∼= v : unit

However we know that by our assumption that ∆; Γ ` v : unit and Lemma 5.7,

∆; Γ ` (λx : unit.x) ((λx : unit.x) v) ∼= (λx : unit.x) v : unit

∆; Γ ` (λx : unit.x) v ∼= v : unit

The desired result follows from transitivity. Since backunit = overunit, the reverse inverse is
identical in this case.

Case for τ = int

In this case we want to show that

∆; Γ ` backint(overint v) ∼= v : int

which is equivalent to
∆; Γ ` (λx : int.x) ((λx : int.x) v) ∼= v : int

However we know that by our assumption that ∆; Γ ` v : int and Lemma 5.7,

∆; Γ ` (λx : int.x) ((λx : int.x) v) ∼= (λx : int.x) v : int

∆; Γ ` (λx : int.x) v ∼= v : int

The desired result follows from transitivity. Since backint = overint, the reverse inverse is identical
in this case.

56

Case for τ = τ1 × τ2

In this case we want to show that

∆; Γ ` backτ1×τ2(overτ1×τ2 v) ∼= v : τ1 × τ2

which is equivalent to

∆; Γ ` (λx : |τ |.〈backτ1π1x, backτ2π2x〉) ((λx : τ.〈overτ1π1x, overτ2π2x〉) v) ∼= v : τ

However we know that by our assumption that ∆; Γ ` v : τ1 × τ2, so by rule Tproj that ∆; Γ `
π1v : τ1 and ∆; Γ ` π2v : τ2, so by induction we have that

∆; Γ ` backτ1(overτ1π1v) ∼= π1v : τ1

∆; Γ ` backτ2(overτ2π2v) ∼= π2v : τ2

Then using Lemma 5.7 and the above,

∆; Γ ` (λx : |τ |.〈backτ1π1x, backτ2π2x〉) ((λx : τ.〈overτ1π1x, overτ2π2x〉) v)
∼= (λx : |τ |.〈backτ1π1x, backτ2π2x〉) (〈overτ1π1v, overτ2π2v〉)
∼= 〈backτ1π1〈overτ1π1v, overτ2π2v〉, backτ2π2〈overτ1π1v, overτ2π2v〉〉
∼= 〈backτ1(overτ1π1v), backτ2(overτ2π2v)〉
∼= 〈π1v, π2v〉
∼= v

: τ1 × τ2

The desired result follows from transitivity. The reverse direction carries out in much the same
way.

Case for τ = τ1 → τ2

In this case we want to show that

∆; Γ ` backτ1→τ2(overτ1→τ2 v) ∼= v : τ1 → τ2

which is equivalent to

∆; Γ ` (λf : |τ |.λy : τ1. unpack[α, g] = f in backτ2((π1g)̂〈overτ1y, π2g〉))

((λf : τ. pack[unit, 〈λ̂y : |τ1| × unit.overτ2(f (backτ1π1y)), ()〉] as |τ |) v)
∼= v : τ

We get by induction that for all ∆; Γ ` e1 : τ1 and ∆; Γ ` e2 : τ2,

∆; Γ ` backτ1(overτ1e1) ∼= e1 : τ1

∆; Γ ` backτ2(overτ2e2) ∼= e2 : τ2

57

Thus, using Lemma 5.7 the fact that ∆; Γ ` v : τ1 → τ2, we can show that

∆; Γ ` (λf : |τ |.λz : τ1. unpack[α, g] = f in backτ2((π1g)̂〈overτ1z, π2g〉))

((λf : τ. pack[unit, 〈λ̂y : |τ1| × unit.overτ2(f (backτ1π1y)), ()〉] as |τ |) v)
∼= (λf : |τ |.λz : τ1. unpack[α, g] = f in backτ2((π1g)̂〈overτ1z, π2g〉))

(pack[unit, 〈λ̂y : |τ1| × unit.overτ2(v (backτ1π1y)), ()〉] as |τ |)
∼= λz : τ1. unpack[α, g] = (pack[unit, 〈λ̂y : |τ1| × unit.overτ2(v (backτ1π1y)), ()〉] as |τ |)

in backτ2((π1g)̂〈overτ1z, π2g〉)
∼= λz : τ1.backτ2((π1〈λ̂y : |τ1| × unit.overτ2(v (backτ1π1y)), ()〉)̂
〈overτ1z, π2〈λ̂y : |τ1| × unit.overτ2(v (backτ1π1y)), ()〉〉)

∼= λz : τ1.backτ2((λ̂y : |τ1| × unit.overτ2(v (backτ1π1y)))̂〈overτ1z, ()〉)
∼= λz : τ1.backτ2(overτ2(v (backτ1π1〈overτ1z, ()〉)))
∼= λz : τ1.backτ2(overτ2(v (backτ1(overτ1z))))
∼= λz : τ1.backτ2(overτ2(v z))
∼= λz : τ1.v z
∼= v : τ

So the desired result follows from transitivity.

Now we want to show the opposite direction, that

∆; |Γ| ` overτ1→τ2(backτ1→τ2 v
′) ∼= v′ : |τ1 → τ2|

which is equivalent to

∆; |Γ| ` (λf : τ. pack[τ, 〈λ̂y : |τ1| × τ.overτ2((π2y) (backτ1π1y)), f〉] as |τ |)
((λf : |τ |.λy : τ1. unpack[α, g] = f in backτ2((π1g)̂〈overτ1y, π2g〉)) v′)
∼= v′ : |τ |

We get by induction that for all ∆; |Γ| ` e1 : |τ1| and ∆; |Γ| ` e2 : |τ2|,

∆; |Γ| ` overτ1(backτ1e1) ∼= e1 : |τ1|

∆; |Γ| ` overτ2(backτ2e2) ∼= e2 : |τ2|

Since v′ is a value, we can assume that v′ = pack[τ ′, 〈h, e〉] as |τ1 → τ2| for an appropriate τ ′, h, e,
where h val and e val. Thus, using Lemma 5.7 and the fact that ∆; |Γ| ` v′ : |τ1 → τ2|, we can

58

show that

∆; |Γ| ` (λf : τ. pack[τ, 〈λ̂y : |τ1| × τ.overτ2((π2y) (backτ1π1y)), f〉] as |τ |)
((λf : |τ |.λy : τ1. unpack[α, g] = f in backτ2((π1g)̂〈overτ1y, π2g〉)) v′)

∼= (λf : τ. pack[τ, 〈λ̂y : |τ1| × τ.overτ2((π2y) (backτ1π1y)), f〉] as |τ |)
(λy : τ1. unpack[α, g] = v′ in backτ2((π1g)̂〈overτ1y, π2g〉))

∼= pack[τ, 〈λ̂y : |τ1| × τ.overτ2((π2y) (backτ1π1y)), λy : τ1.

unpack[α, g] = v′ in backτ2((π1g)̂〈overτ1y, π2g〉)〉] as |τ |
∼= pack[τ, 〈λ̂y : |τ1| × τ.overτ2((π2y) (backτ1π1y)), λy : τ1.

unpack[α, g] = (pack[τ ′, 〈h, e〉] as |τ |) in backτ2((π1g)̂〈overτ1y, π2g〉)〉] as |τ |
∼= pack[τ, 〈λ̂y : |τ1| × τ.overτ2((π2y) (backτ1π1y)), λy : τ1.

backτ2((π1〈h, e〉)̂〈overτ1y, π2〈h, e〉〉)〉] as |τ |
∼= pack[τ, 〈λ̂y : |τ1| × τ.overτ2((π2y) (backτ1π1y)), λy : τ1.

backτ2(ĥ〈overτ1y, e〉)〉] as |τ | : |τ |
For conciseness, define F = λy : τ1.backτ2(ĥ〈overτ1y, e〉). Thus all that we need to show is

∆; |Γ| ` pack[τ, 〈λ̂y : |τ1| × τ.overτ2((π2y) (backτ1π1y)), F 〉] as |τ | ∼= pack[τ ′, 〈h, e〉] as |τ | : |τ |

From which the desired result will follow, since v′ = pack[τ ′, 〈h, e〉] as |τ |. To show the above, we
will first use the coincidence of logical and contextual equivalence to instead show that

∆; |Γ| ` pack[τ, 〈λ̂y : |τ1| × τ.overτ2((π2y) (backτ1π1y)), F 〉] as |τ | ∼ pack[τ ′, 〈h, e〉] as |τ | : |τ |

Which means that we must show that for any δ1 : ∆, δ2 : ∆, and η : δ1 ↔ δ2, with
γ1 ∼|Γ| γ2[η : δ1 ↔ δ2], that

(δ̂1(γ̂1(pack[τ, 〈λ̂y : |τ1| × τ.overτ2((π2y) (backτ1π1y)), F 〉] as |τ |)), δ̂2(γ̂2(pack[τ ′, 〈h, e〉] as |τ |)))
∈ [∃α.((|τ1| × α)⇒ |τ2|)× α]η:δ1↔δ2

By definition, this is the case if there exists some ST-closed R ⊆ Val(τ)× Val(δ̂2(τ ′)) such that

(〈δ̂1(γ̂1(〈λ̂y : |τ1| × τ.overτ2((π2y) (backτ1π1y)), F 〉)), ()〉, 〈δ̂2(γ̂2(h)), δ̂2(γ̂2(e))〉)
∈ [((|τ1| × α)⇒ |τ2|)× α]η′:δ′1↔δ′2

Where δ′1 = δ1 ⊗ α ↪→ τ1 → τ2, δ′2 = δ2 ⊗ α ↪→ δ̂2(τ ′), and η′ = η ⊗ α ↪→ R . So just define

R = {(e1, e2) | (δ̂1(γ̂1(F)), e1) ∈ [τ]η:δ1↔δ2 and (δ̂2(γ̂2(e)), e2) ∈ [τ ′]η:δ1↔δ2}, which is clearly ST-
closed. Then we just need to show that each of the projections are valid. By the definition of R ,
we already know that (δ̂1(γ̂1(F)), δ̂2(γ̂2(e))) ∈ [α]η′:δ′1↔δ′2

, so all that we have left to show is that

(δ̂1(γ̂1(λ̂x : |τ1| × (τ1 → τ2).(ĥ〈π1x, e〉))), δ̂2(γ̂2(h))) ∈ [(|τ1| × α)⇒ |τ2|]η′:δ′1↔δ′2
To show this we assume that (v1, v2) ∈ [|τ1| × α]η′:δ′1↔δ′2 and show that

(δ̂1(γ̂1(λ̂x : |τ1| × (τ1 → τ2).(ĥ〈π1x, e〉)))̂v1, δ̂2(γ̂2(h))̂v2) ∈ [|τ2|]Eη′:δ′1↔δ′2
Which by Lemma 7.5 is the same as showing

(δ̂1(γ̂1(ĥ〈π1v1, e〉)), δ̂2(γ̂2(ĥv2))) ∈ [|τ2|]Eη′:δ′1↔δ′2

59

Since we know by reflexivity that

(δ̂1(γ̂1(h)), δ̂2(γ̂2(h))) ∈ [(|τ1| × τ ′)⇒ |τ2|]η:δ1↔δ2

By definition we then just have to show that

(δ̂1(γ̂1(〈π1v1, e〉)), δ̂2(γ̂2(v2))) ∈ [|τ1| × τ ′]Eη′:δ′1↔δ′2
We know by assumption that

(δ̂1(γ̂1(π1v1)), δ̂2(γ̂2(π1v2))) ∈ [|τ1|]Eη′:δ′1↔δ′2
And by the definition of R , it follows that

(δ̂1(γ̂1(e)), δ̂2(γ̂2(π2v2))) ∈ [τ ′]Eη′:δ′1↔δ′2

So the desired result follows.

Case for τ = ∀α.τ ′
In this case we want to show that

∆; Γ ` back∀α.τ ′(over∀α.τ ′ v) ∼= v : ∀α.τ ′

which is equivalent to

∆; Γ ` (λx : |τ |.Λα.backτ ′(x[α])) ((λx : τ.Λα.overτ ′(x[α])) v) ∼= v : ∀α.τ ′

However we know that by our assumption that ∆; Γ ` v : ∀α.τ ′, so by rule Ttapp that ∆; Γ ` v[τ ′′] :
[τ ′′/α]τ , so by induction we have that

∆; Γ ` backτ ′(overτ ′(v[τ ′′])) ∼= v[τ ′′] : [τ ′′/α]τ ′

Then using Lemma 5.7 and the above,

∆; Γ ` (λx : |τ |.Λα.backτ ′(x[α])) ((λx : τ.Λα.overτ ′(x[α])) v)
∼= (λx : |τ |.Λα.backτ ′(x[α])) (Λα.overτ ′(v[α]))
∼= Λα.backτ ′((Λα.overτ ′(v[α]))[α])
∼= Λα.backτ ′(overτ ′(v[α]))
∼= Λα.v[α]
∼= v

: ∀α.τ ′

The desired result follows from transitivity. The reverse direction carries out in much the same
way.

Case for τ = ∃α.τ ′
In this case we want to show that

∆; Γ ` back∃α.τ ′(over∃α.τ ′ v) ∼= v : ∃α.τ ′

which is equivalent to

∆; Γ `(λx : |τ |. unpack[α, y] = x in(pack[α, backτ ′y] as τ))

((λx : τ. unpack[α, y] = x in(pack[α, overτ ′y] as |τ |)) v) ∼= v : ∃α.τ ′

60

Using the fact that ∆; Γ ` v : ∃α.τ ′ and it is a value, we know that v = pack[τ ′′, e] as ∃α.τ ′ for
some τ ′′, e such that e val by rule Tpack. We get by induction that for all ∆, α; Γ ` e : τ ′,

∆; Γ ` backτ ′(overτ ′e) ∼= e : τ ′

Thus using Lemma 5.7, we can show that

∆; Γ ` (λx : |τ |. unpack[α, y] = x in(pack[α, backτ ′y] as τ))

((λx : τ. unpack[α, y] = x in(pack[α, overτ ′y] as |τ |)) v)
∼= (λx : |τ |. unpack[α, y] = x in(pack[α, backτ ′y] as τ))

(unpack[α, y] = v in(pack[α, overτ ′y] as |τ |))
∼= (λx : |τ |. unpack[α, y] = x in(pack[α, backτ ′y] as τ))

(unpack[α, y] = (pack[τ ′′, e] as∃α.τ ′) in(pack[α, overτ ′y] as |τ |))
∼= (λx : |τ |. unpack[α, y] = x in(pack[α, backτ ′y] as τ)) (pack[τ ′′, overτ ′e] as |τ |)
∼= unpack[α, y] = (pack[τ ′′, overτ ′e] as |τ |) in(pack[α, backτ ′y] as τ)
∼= pack[τ ′′, ([τ ′′/α]backτ ′)(([τ

′′/α]overτ ′)e)] as τ
∼= pack[τ ′′, e] as τ
∼= v

: ∃α.τ ′

The desired result follows from transitivity. The reverse direction carries out in much the same
way.

Lemma 11.2. The functions overτ and backτ are inverses of one another. That is,

∆; Γ ` backτ o overτ ∼= id : τ → τ

∆; |Γ| ` overτ o backτ ∼= id : |τ | → |τ |

Proof. By the coincidence of contextual and logical equivalence, we can equivalently show that

∆; Γ ` backτ o overτ ∼ id : τ → τ

Let γ1 : Γ, γ2 : Γ, δ1 : ∆, δ2 : ∆, and η : δ1 ↔ δ2. Thus we can equivalently show that

(γ̂1(δ̂1(backτ o overτ)), γ̂2(δ̂2(λx : τ.x))) ∈ [τ → τ]η:δ1↔δ2

which by the definition of function composition is the same as

(γ̂1(δ̂1(λx : τ.(backτ (overτ x)))), γ̂2(δ̂2(λx : τ.x))) ∈ [τ → τ]η:δ1↔δ2

To show this, we assume that (v1, v2) ∈ [τ]η:δ1↔δ2 and show that

(γ̂1(δ̂1(λx : τ.(backτ (overτ x)))) v1, γ̂2(δ̂2(λx : τ.x)) v2) ∈ [τ]η:δ1↔δ2

which is equivalent to

(γ̂1(δ̂1((λx : τ.(backτ (overτ x))) v1)), γ̂2(δ̂2((λx : τ.x) v2))) ∈ [τ]η:δ1↔δ2

61

However, by Lemma 11.1 we know that

γ̂1(δ̂1((λx : τ.(backτ (overτ x))) v1)) ∼=δ̂1(τ)
γ̂1(δ̂1(backτ (overτ v1))) ∼=δ̂1(τ)

γ̂1(δ̂1(v1)) ∼=δ̂1(τ)
v1 : τ

γ̂2(δ̂2((λx : τ.x) v2)) ∼=δ̂2(τ)
γ̂2(δ̂2(v2)) ∼=δ̂2(τ)

v2 : τ

So by Lemma 9.3 this is the same as shoing that (v1, v2) ∈ [τ]η:δ1↔δ2 , however we assumed this
already, so the desired result follows.

62

11.3 The Back Relation

Lemma 11.3. If ∆, α `S τ type and ∆ `S τ ′ type, then for any δ1 : ∆, δ2 : ∆, and η : δ1 ↔ δ2,
there exists an ST-closed relation R ∈ Val(δ̂1(τ ′))× Val(δ̂2(|τ ′|)) defined as

R = {(v1, v2) | (v1, δ̂2(backτ ′)(v2)) ∈ [τ ′]Eη:δ1↔δ2}

such that
(δ̂1([τ ′/α]backτ), δ̂2(back[τ ′/α]τ)) ∈ [|τ | → [τ ′/α]τ]η′:δ′1↔δ′2

(δ̂1([τ ′/α]overτ), δ̂2(over[τ ′/α]τ)) ∈ [[τ ′/α]τ → |τ |]η′:δ′1↔δ′2
Where η′ = η⊗α ↪→ R , δ′1 = δ1⊗α ↪→ δ̂1(τ ′), δ′2 = δ2⊗α ↪→ δ̂2(|τ ′|), We know that R is ST-closed
because it is defined in terms of [τ ′]Eη:δ1↔δ2 , which is itself ST-closed.

Proof. By induction on the structure of τ .

Case for τ = unit

In this case we want to show that

(δ̂1([τ ′/α]backunit), δ̂2(back[τ ′/α]unit)) ∈ [|unit| → [τ ′/α]unit]η′:δ′1↔δ′2

This is equivalent to
(backunit, backunit) ∈ [unit→ unit]η′:δ′1↔δ′2

This follows immediately from Reflexivity. The case for over works exactly the same.

Case for τ = int

In this case we want to show that

(δ̂1([τ ′/α]backint), δ̂2(back[τ ′/α]int)) ∈ [|int| → [τ ′/α]int]η′:δ′1↔δ′2

This is equivalent to
(backint, backint) ∈ [int→ int]η′:δ′1↔δ′2

This follows immediately from Reflexivity. The case for over works exactly the same.

Case for τ = α
In this case we want to show that

(δ̂1([τ ′/α]backα), δ̂2(back[τ ′/α]α)) ∈ [|α| → [τ ′/α]α]η′:δ′1↔δ′2

This is equivalent to

(δ̂1([τ ′/α](λx : α.x)), δ̂2(backτ ′)) ∈ [α→ τ ′]η′:δ′1↔δ′2

And similarly equivalent to

(λx : δ̂1(τ ′).x, δ̂2(backτ ′)) ∈ [α→ τ ′]η′:δ′1↔δ′2

To show this we assume that (v1, v2) ∈ [α]η′:δ′1↔δ′2
, which implies that (v1, v2) ∈ R , and show that

((λx : δ̂1(τ ′).x) v1, δ̂2(backτ ′) v2) ∈ [τ ′]Eη′:δ′1↔δ′2

63

However, since τ ′ doesn’t reference α, we can equivalently show that

(v1, δ̂2(backτ ′) v2) ∈ [τ ′]Eη:δ1↔δ2

This follows immediately from our definition of R .

Now we need to show the other half, that

(δ̂1([τ ′/α]overα), δ̂2(over[τ ′/α]α)) ∈ [[τ ′/α]α→ |α|]η′:δ′1↔δ′2
This is equivalent to

(δ̂1([τ ′/α](λx : α.x)), δ̂2(overτ ′)) ∈ [τ ′ → α]η′:δ′1↔δ′2

And similarly equivalent to

(λx : δ̂1(τ ′).x, δ̂2(overτ ′)) ∈ [τ ′ → α]η′:δ′1↔δ′2

To show this we assume that (v1, v2) ∈ [τ ′]η′:δ′1↔δ′2
, and show that

((λx : δ̂1(τ ′).x) v1, δ̂2(overτ ′) v2) ∈ [α]Eη′:δ′1↔δ′2

This is equivalent to showing that

(v1, δ̂2(overτ ′) v2) ∈ [α]Eη′:δ′1↔δ′2

Which is the same as showing that (v1, δ̂2(overτ ′) v2) ∈ R E. We know by Lemma 11.1 that

v2
∼=δ̂2(τ ′)

δ̂2(backτ ′)(δ̂2(overτ ′) v2)

So by Lemma 9.3, we know that from our assumption that

(v1, δ̂2(backτ ′)(δ̂2(overτ ′) v2)) ∈ [τ ′]Eη′:δ′1↔δ′2

Since v1 ↓, this implies that δ̂2(overτ ′) v2 ↓, so we have that δ̂2(overτ ′) v2 7→∗ v′2 for some value
v′2. Then we know by Lemma 7.5 that

(v1, δ̂2(backτ ′) v
′
2) ∈ [τ ′]Eη′:δ′1↔δ′2

But by definition this implies that (v1, v
′
2) ∈ R , and therefore that (v1, δ̂2(overτ ′) v2) ∈ R E.

Case for τ = τ1 × τ2

In this case we want to show that

(δ̂1([τ ′/α]backτ1×τ2), δ̂2(back[τ ′/α](τ1×τ2))) ∈ [|τ1 × τ2| → [τ ′/α](τ1 × τ2)]η′:δ′1↔δ′2

To show this we assume that (v1, v2) ∈ [|τ1 × τ2|]η′:δ′1↔δ′2 , and show

(δ̂1([τ ′/α]backτ1×τ2) v1, δ̂2(back[τ ′/α](τ1×τ2)) v2) ∈ [[τ ′/α](τ1 × τ2)]Eη′:δ′1↔δ′2

By the definition of back, this is the same as showing

(δ̂1(([τ ′/α](λx : |τ1 × τ2|.〈backτ1(π1x), backτ2(π2x〉)))(v1)),

δ̂2(λx : |[τ ′/α](τ1 × τ2)|.〈back[τ ′/α]τ1(π1x), back[τ ′/α]τ2(π2x)〉(v2))) ∈ [[τ ′/α](τ1 × τ2)]Eη′:δ′1↔δ′2

64

By Lemma 7.5, this is equivalent to showing

(δ̂1(〈([τ ′/α]backτ1)(π1v1), ([τ ′/α]backτ2)(π2v1)〉),

δ̂2(〈back[τ ′/α]τ1(π1v2), back[τ ′/α]τ2(π2v2)〉)) ∈ [[τ ′/α]τ1 × [τ ′/α]τ2]
E
η′:δ′1↔δ′2

Then using Lemma 8.3 for pairs we just need to show that

(δ̂1(([τ ′/α]backτ1)(π1v1)), δ̂2(back[τ ′/α]τ1(π1v2))) ∈ [[τ ′/α]τ1]
E
η′:δ′1↔δ′2

(δ̂1(([τ ′/α]backτ2)(π2v1)), δ̂2(back[τ ′/α]τ2(π2v2))) ∈ [[τ ′/α]τ2]
E
η′:δ′1↔δ′2

However by induction we get that

(δ̂1([τ ′/α]backτ1), δ̂2(back[τ ′/α]τ1)) ∈ [|τ1| → [τ ′/α]τ1]η′:δ′1↔δ′2

(δ̂1([τ ′/α]backτ2), δ̂2(back[τ ′/α]τ2)) ∈ [|τ2| → [τ ′/α]τ2]η′:δ′1↔δ′2

We also know by our assumption and the definition of the type relation that (π1v1, π1v2) ∈
[|τ1|]Eη′:δ′1↔δ′2 and (π2v1, π2v2) ∈ [|τ2|]Eη′:δ′1↔δ′2 , from which the desired result follows by Lemma 8.3
for functions.

Now we want to show this for over as well, so we want to show that

(δ̂1([τ ′/α]overτ1×τ2), δ̂2(over[τ ′/α](τ1×τ2))) ∈ [[τ ′/α](τ1 × τ2)→ |τ1 × τ2|]η′:δ′1↔δ′2

To show this we assume that (v1, v2) ∈ [[τ ′/α](τ1 × τ2)]η′:δ′1↔δ′2
, and show

(δ̂1([τ ′/α]overτ1×τ2) v1, δ̂2(over[τ ′/α](τ1×τ2)) v2) ∈ [|τ1 × τ2|]Eη′:δ′1↔δ′2
By the definition of over, this is the same as showing

(δ̂1([τ ′/α]λx : τ1 × τ2.〈overτ1(π1x), overτ2(π2x)〉 v1),

δ̂2(λx : [τ ′/α](τ1 × τ2).〈over[τ ′/α]τ1(π1x), over[τ ′/α]τ2(π2x)〉 v2)) ∈ [|τ1 × τ2|]Eη′:δ′1↔δ′2
By Lemma 7.5, this is equivalent to showing

(δ̂1(〈([τ ′/α]overτ1)(π1v1), ([τ ′/α]overτ2)(π2v1)〉),

δ̂2(〈over[τ ′/α]τ1(π1v2), over[τ ′/α]τ2(π2v2)〉)) ∈ [|τ1 × τ2|]Eη′:δ′1↔δ′2
Then using Lemma 8.3 for pairs we just need to show that

(δ̂1(([τ ′/α]overτ1)(π1v1)), δ̂2(over[τ ′/α]τ1(π1v2))) ∈ [|τ1|]Eη′:δ′1↔δ′2

(δ̂1(([τ ′/α]overτ2)(π2v1)), δ̂2(over[τ ′/α]τ2(π2v2))) ∈ [|τ2|]Eη′:δ′1↔δ′2
However by induction we get that

(δ̂1([τ ′/α]overτ1), δ̂2(over[τ ′/α]τ1)) ∈ [[τ ′/α]τ1 → |τ1|]η′:δ′1↔δ′2

(δ̂1([τ ′/α]overτ2), δ̂2(over[τ ′/α]τ2)) ∈ [[τ ′/α]τ2 → |τ2|]η′:δ′1↔δ′2
We also know by our assumption and the definition of the type relation that (π1v1, π1v2) ∈
[[τ ′/α]τ1]

E
η′:δ′1↔δ′2

and (π2v1, π2v2) ∈ [[τ ′/α]τ2]
E
η′:δ′1↔δ′2

, from which the desired result follows by
Lemma 8.3 for functions.

65

Case for τ = τ1 → τ2

In this case we want to show that

(δ̂1([τ ′/α]backτ1→τ2), δ̂2(back[τ ′/α](τ1→τ2))) ∈ [|τ1 → τ2| → [τ ′/α](τ1 → τ2)]η′:δ′1↔δ′2

We assume that

(f1, f2) ∈ [|τ1 → τ2|]η′:δ′1↔δ′2 = [∃β.(|τ1| × β ⇒ |τ2|)× β]η′:δ′1↔δ′2

So by definition we just need to show that

(δ̂1([τ ′/α]backτ1→τ2) f1, δ̂2(back[τ ′/α]τ1→[τ ′/α]τ2) f2) ∈ [[τ ′/α]τ1 → [τ ′/α]τ2]
E
η′:δ′1↔δ′2

However, this no longer depends on α, so we can just show that

(δ̂1([τ ′/α]backτ1→τ2 f1), δ̂2(back[τ ′/α]τ1→[τ ′/α]τ2 f2)) ∈ [[τ ′/α]τ1 → [τ ′/α]τ2]
E
η:δ1↔δ2

By the definition of back this is the same as showing

(δ̂1(([τ ′/α](λf : |τ1 → τ2|.λy : τ1. unpack[β, g] = f in backτ2((π1g)̂〈overτ1y, π2g〉))) f1),

δ̂2((λf : |[τ ′/α]τ1 → [τ ′/α]τ2|.λy : [τ ′/α]τ1. unpack[β, g] = f in

back[τ ′/α]τ2((π1g)̂〈over[τ ′/α]τ1y, π2g〉)) f2)) ∈ [[τ ′/α]τ1 → [τ ′/α]τ2]
E
η:δ1↔δ2

Then by Lemma 7.5, this is equivalent to showing

(δ̂1((λy : [τ ′/α]τ1. unpack[β, g] = f1 in([τ ′/α]backτ2)((π1g)̂〈([τ ′/α]overτ1)y, π2g〉))),

δ̂2(λy : [τ ′/α]τ1. unpack[β, g] = f2 in back[τ ′/α]τ2((π1g)̂〈over[τ ′/α]τ1y, π2g〉)))
∈ [[τ ′/α]τ1 → [τ ′/α]τ2]η:δ1↔δ2

To show this we assume that (v1, v2) ∈ [[τ ′/α]τ1]η:δ1↔δ2 and show that

(δ̂1(λy : [τ ′/α]τ1. unpack[β, g] = f1 in([τ ′/α]backτ2)((π1g)̂〈([τ ′/α]overτ1)y, π2g〉)) v1,

δ̂2(λy : [τ ′/α]τ1. unpack[β, g] = f2 in back[τ ′/α]τ2((π1g)̂〈over[τ ′/α]τ1y, π2g〉)) v2)

∈ [[τ ′/α]τ2]
E
η:δ1↔δ2

Then by Lemma 7.5, this is equivalent to showing

(δ̂1(unpack[β, g] = f1 in([τ ′/α]backτ2)((π1g)̂〈([τ ′/α]overτ1)v1, π2g〉)),

δ̂2(unpack[β, g] = f2 in back[τ ′/α]τ2((π1g)̂〈over[τ ′/α]τ1v2, π2g〉)))
∈ [[τ ′/α]τ2]

E
η:δ1↔δ2

Since f1 is a value, we know by rule V pack that it is of the form pack[τ ′1, g1] as |τ1 → τ2| for
appropriate type τ ′1 and value g1. Similarly we can write f2 as pack[τ ′2, g2] as |τ1 → τ2|. Thus we
can show that

(δ̂1(unpack[β, g] = pack[τ ′1, g1] as |τ1 → τ2| in([τ ′/α]backτ2)((π1g)̂〈([τ ′/α]overτ1)v1, π2g〉)),

δ̂2(unpack[β, g] = pack[τ ′2, g2] as |τ1 → τ2| in back[τ ′/α]τ2((π1g)̂〈over[τ ′/α]τ1v2, π2g〉)))
∈ [[τ ′/α]τ2]

E
η:δ1↔δ2

66

Thus by Lemma 7.5, we can just show that

(δ̂1(([τ ′/α]backτ2)((π1g1)̂〈([τ ′/α]overτ1)v1, π2g1〉)),

δ̂2(back[τ ′/α]τ2((π1g2)̂〈over[τ ′/α]τ1v2, π2g2〉))) ∈ [[τ ′/α]τ2]
E
η:δ1↔δ2

However since we know by induction that

(δ̂1([τ ′/α]backτ2), δ̂2(back[τ ′/α]τ2)) ∈ [|τ2| → [τ ′/α]τ2]η′:δ′1↔δ′2

So by Lemma 8.3 we just have to show that

δ̂1((π1g1)̂〈([τ ′/α]overτ1)v1, π2g1〉), δ̂2((π1g2)̂〈over[τ ′/α]τ1v2, π2g2〉)) ∈ [|τ2|]Eη′:δ′1↔δ′2

Now by our assumption that (f1, f2) ∈ [|τ1 → τ2|]η′:δ′1↔δ′2 , we know that there exists a relation

R ′ ⊆ Val(τ1)× Val(τ2) such that

(g1, g2) ∈ [(|τ1| × β ⇒ |τ2|)× β]η′′:δ′′1↔δ′′2

Where δ′′1 = δ′1⊗β ↪→ τ ′1, δ′′2 = δ′2⊗β ↪→ τ ′2, and η′′ = η′⊗β ↪→ R ′. This tells us that by definition,

(π1g1, π1g2) ∈ [|τ1| × β ⇒ |τ2|]Eη′′:δ′′1↔δ′′2

(π2g1, π2g2) ∈ [β]Eη′′:δ′′1↔δ′′2

We also know by induction that

(δ̂1([τ ′/α]overτ1), δ̂2(over[τ ′/α]τ1)) ∈ [[τ ′/α]τ1 → |τ1|]η′:δ′1↔δ′2

Which by definition tells us that

(δ̂1([τ ′/α]overτ1) v1, δ̂2(over[τ ′/α]τ1) v2) ∈ [|τ1|]Eη′:δ′1↔δ′2

Which then by Lemma 8.3 for pairs we know that

(δ̂1(〈[τ ′/α]overτ1) v1, π2g1〉, δ̂2(〈over[τ ′/α]τ1) v2, π2g1〉) ∈ [|τ1| × β]Eη′′:δ′′1↔δ′′2

Then again by Lemma 8.3 for functions we know that

δ̂1((π1g1)̂〈([τ ′/α]overτ1)v1, π2g1〉), δ̂2((π1g2)̂〈over[τ ′/α]τ1v2, π2g2〉)) ∈ [|τ2|]Eη′:δ′1↔δ′2

Which is what we wanted to show.

Now we need to show the corresponding case for over, that is

(δ̂1([τ ′/α]overτ1→τ2), δ̂2(over[τ ′/α](τ1→τ2))) ∈ [[τ ′/α](τ1 → τ2)→ |τ1 → τ2|]η′:δ′1↔δ′2

We assume that
(f1, f2) ∈ [[τ ′/α](τ1 → τ2)]η′:δ′1↔δ′2

So by definition we just need to show that

(δ̂1([τ ′/α]overτ1→τ2) f1, δ̂2(over[τ ′/α]τ1→[τ ′/α]τ2) f2) ∈ [|τ1 → τ2|]Eη′:δ′1↔δ′2

67

By the definition of over this is the same as showing

(δ̂1(([τ ′/α](λf : τ1 → τ2. pack[τ1 → τ2, 〈λ̂y : |τ1| × (τ1 → τ2).

overτ2((π2y) (backτ1(π1y))), f〉] as |τ1 → τ2|)) f1),

δ̂2((λf : [τ ′/α]τ1 → [τ ′/α]τ2. pack[τ1 → τ2, 〈λ̂y : |[τ ′/α]τ1| × (τ1 → τ2).

over[τ ′/α]τ2((π2y) (back[τ ′/α]τ1(π1y))), f〉] as |[τ ′/α]τ1 → [τ ′/α]τ2|) f2)) ∈ [|τ1 → τ2|]Eη′:δ′1↔δ′2

Then by Lemma 7.5, this is equivalent to showing

(δ̂1([τ ′/α] pack[τ1 → τ2, 〈λ̂y : |τ1| × (τ1 → τ2).overτ2((π2y) (backτ1(π1y))), f1〉] as |τ1 → τ2|),

δ̂2(pack[τ1 → τ2, 〈λ̂y : |[τ ′/α]τ1| × (τ1 → τ2).over[τ ′/α]τ2((π2y) (back[τ ′/α]τ1(π1y))), f2〉]
as |[τ ′/α]τ1 → [τ ′/α]τ2|)) ∈ [∃β.(|τ1| × β ⇒ |τ2|)× β]η′:δ′1↔δ′2

To show this, we pick R ′ = [[τ ′/α](τ1 → τ2)] and use the definition of the type relation to show
that

(δ̂1([τ ′/α]〈λ̂y : |τ1| × (τ1 → τ2).overτ2((π2y) (backτ1(π1y))), f1〉),

δ̂2(〈λ̂y : |[τ ′/α]τ1| × (τ1 → τ2).over[τ ′/α]τ2((π2y) (back[τ ′/α]τ1(π1y))), f2〉)
∈ [(|τ1| × β ⇒ |τ2|)× β]η′′:δ′′1↔δ′′2

Where δ′′1 = δ′1 ⊗ β ↪→ [τ ′/α](τ1 → τ2), δ′′2 = δ′2 ⊗ β ↪→ [τ ′/α](τ1 → τ2), and η′′ = η′ ⊗ β ↪→ R ′. We
already know that (f1, f2) ∈ [β]η′′:δ′′1↔δ′′2

= R ′ = [[τ ′/α](τ1 → τ2)] by assumption, so by definition
we just need to show that

(δ̂1([τ ′/α](λ̂y : |τ1| × (τ1 → τ2).overτ2((π2y) (backτ1(π1y))))),

δ̂2(λ̂y : |[τ ′/α]τ1| × (τ1 → τ2).over[τ ′/α]τ2((π2y) (back[τ ′/α]τ1(π1y)))))

∈ [|τ1| × β ⇒ |τ2|]η′′:δ′′1↔δ′′2

To do this we assume that (v1, v2) ∈ [|τ1| × β]η′′:δ′′1↔δ′′2 and show that

(δ̂1([τ ′/α](λ̂y : |τ1| × (τ1 → τ2).overτ2((π2y) (backτ1(π1y)))))̂v1,

δ̂2(λ̂y : |[τ ′/α]τ1| × (τ1 → τ2).over[τ ′/α]τ2((π2y) (back[τ ′/α]τ1(π1y))))̂v2)

∈ [|τ2|]η′′:δ′′1↔δ′′2

So by Lemma 7.5, this is equivalent to showing

(δ̂1(([τ ′/α]overτ2)((π2v1) (([τ ′/α]backτ1)(π1v1)))),

δ̂2(over[τ ′/α]τ2((π2v2) (back[τ ′/α]τ1(π1v2))))) ∈ [|τ2|]η′′:δ′′1↔δ′′2

However by induction we know that

(δ̂1([τ ′/α]overτ2), δ̂2(over[τ ′/α]τ2)) ∈ [[τ ′/α]τ2 → |τ2|]η′:δ′1↔δ′2

So by Lemma 8.3 we just need to show that

(δ̂1((π2v1) (([τ ′/α]backτ1)(π1v1))), δ̂2((π2v2) (back[τ ′/α]τ1(π1v2)))) ∈ [[τ ′/α]τ2]
E
η′′:δ′′1↔δ′′2

68

By assumption we know that (π2v1, π2v2) ∈ [β]η′:δ′1↔δ′2
= [[τ ′/α](τ1 → τ2)]η′′:δ′′1↔δ′′2

, so again by
Lemma 8.3 this is the same as showing that

(δ̂1(([τ ′/α]backτ1)(π1v1)), δ̂2(back[τ ′/α]τ1(π1v2))) ∈ [[τ ′/α]τ1]
E
η′′:δ′′1↔δ′′2

We also know by induction that

(δ̂1([τ ′/α]backτ1), δ̂2(back[τ ′/α]τ1)) ∈ [|τ1| → [τ ′/α]τ1]η′:δ′1↔δ′2

So by Lemma 8.3 all we have to do to show the above is show that

(δ̂1(π1v1), δ̂2(π1v2)) ∈ [|τ1|]Eη′′:δ′′1↔δ′′2

However this follows from our assumption that (v1, v2) ∈ [|τ1|×β]η′′:δ′′1↔δ′′2 , and so the result follows.

Case for τ = ∀β.τ ′′
In this case we want to show that

(δ̂1([τ ′/α]back∀β.τ ′′), δ̂2(back[τ ′/α](∀β.τ ′′))) ∈ [|∀β.τ ′′| → [τ ′/α](∀β.τ ′′)]η′:δ′1↔δ′2

Then we assume that (v1, v2) ∈ [|∀β.τ ′′|]η′:δ′1↔δ′2 , and so by definition we just need to show

(δ̂1([τ ′/α]back∀β.τ ′′) v1, δ̂2(back∀β.([τ ′/α]τ ′′)) v2) ∈ [∀β.([τ ′/α]τ ′′)]Eη′:δ′1↔δ′2

By the definition of back, this is equivalent to

(δ̂1([τ ′/α](λx : |∀β.τ ′′|.Λβ.backτ ′′(x[β])) v1),

δ̂2((λx : |∀β.τ ′′|.Λβ.back[τ ′/α]τ ′′(x[β])) v2)) ∈ [∀β.([τ ′/α]τ ′′)]Eη′:δ′1↔δ′2

Then by Lemma 7.5, this is equivalent to showing

(δ̂1(Λβ.([τ ′/α]backτ ′′)(v1[β])),

δ̂2(Λβ.back[τ ′/α]τ ′′(v2[β]))) ∈ [∀β.([τ ′/α]τ ′′)]η′:δ′1↔δ′2

Then by definition, we just need to show that for all τ1 type, τ2 type, and R ′ ⊆ Val(τ1)× Val(τ2)
s.t. R ′ = R ′ST,

(δ̂1(Λβ.([τ ′/α]backτ ′′)(v1[β]))[τ1],

δ̂2(Λβ.back[τ ′/α]τ ′′(v2[β]))[τ2]) ∈ [([τ ′/α]τ ′′)]Eη′′:δ′′1↔δ′′2

Where δ′′1 = δ′1 ⊗ β ↪→ τ1, δ′′2 = δ′2 ⊗ β ↪→ τ2, and η′′ = η′ ⊗ β ↪→ R ′. So by Lemma 7.5, this is
equivalent to showing

(δ̂1(([τ ′/α]backτ ′′)(v1[τ1])), δ̂2(back[τ ′/α]τ ′′(v2[τ2]))) ∈ [([τ ′/α]τ ′′)]Eη′′:δ′′1↔δ′′2

However, we get by induction that

(δ̂′1([τ ′/α]backτ ′′), δ̂
′
2(back[τ ′/α]τ ′′)) ∈ [|τ ′′| → [τ ′/α]τ ′′]η′′:δ′′1↔δ′′2

And by our assumption and the definition of the type relation we know that

(v1[τ1], v2[τ2]) ∈ [|τ ′′|]Eη′′:δ′′1↔δ′′2

69

So with the above, the desired result follows by Lemma 8.3 for functions.

Now we want to show the same for over, which is that

(δ̂1([τ ′/α]over∀β.τ ′′), δ̂2(over[τ ′/α](∀β.τ ′′))) ∈ [[τ ′/α](∀β.τ ′′)→ |∀β.τ ′′|]η′:δ′1↔δ′2

Then we assume that (v1, v2) ∈ [[τ ′/α](∀β.τ ′′)]η′:δ′1↔δ′2 , and so by definition we just need to show

(δ̂1([τ ′/α]over∀β.τ ′′) v1, δ̂2(over∀β.([τ ′/α]τ ′′)) v2) ∈ [∀β.|τ ′′|]Eη′:δ′1↔δ′2
By the definition of over, this is equivalent to

(δ̂1([τ ′/α](λx : (∀β.τ ′′).Λβ.overτ ′′(x[β])) v1),

δ̂2((λx : (∀β.τ ′′).Λβ.over[τ ′/α]τ ′′(x[β])) v2)) ∈ [∀β.|τ ′′|]Eη′:δ′1↔δ′2
Then by Lemma 7.5, this is equivalent to showing

(δ̂1(Λβ.([τ ′/α]overτ ′′)(v1[β])), δ̂2(Λβ.over[τ ′/α]τ ′′(v2[β]))) ∈ [∀β.|τ ′′|]η′:δ′1↔δ′2

Then by definition, we just need to show that for all τ1 type, τ2 type, and R ′ ⊆ Val(τ1)× Val(τ2)
s.t. R ′ = R ′ST,

(δ̂1(Λβ.([τ ′/α]overτ ′′)(v1[β])[τ1]), δ̂2(Λβ.over[τ ′/α]τ ′′(v2[β]))[τ2]) ∈ [|τ ′′|]Eη′′:δ′′1↔δ′′2

Where δ′′1 = δ′1 ⊗ β ↪→ τ1, δ′′2 = δ′2 ⊗ β ↪→ τ2, and η′′ = η′ ⊗ β ↪→ R ′. So by Lemma 7.5, this is
equivalent to showing

(δ̂1(([τ ′/α]overτ ′′)(v1[τ1])), δ̂2(over[τ ′/α]τ ′′(v2[τ2]))) ∈ [|τ ′′|]Eη′′:δ′′1↔δ′′2
However, we get by induction that

(δ̂′1([τ ′/α]overτ ′′), δ̂
′
2(over[τ ′/α]τ ′′)) ∈ [[τ ′/α]τ ′′ → |τ ′′|]η′′:δ′′1↔δ′′2

And by our assumption and the definition of the type relation we know that

(v1[τ1], v2[τ2]) ∈ [[τ ′/α]τ ′′]Eη′′:δ′′1↔δ′′2

So with the above, the desired result follows by Lemma 8.3 for functions.

Case for τ = ∃β.τ ′′
In this case we want to show that

(δ̂1([τ ′/α]back∃β.τ ′′), δ̂2(back[τ ′/α](∃β.τ ′′))) ∈ [|∃β.τ ′′| → [τ ′/α](∃β.τ ′′)]η′:δ′1↔δ′2

Then we assume that (v1, v2) ∈ [|∃β.τ ′′|]η′:δ′1↔δ′2 , and so by definition we just need to show

(δ̂1([τ ′/α]back∃β.τ ′′) v1, δ̂2(back∃β.([τ ′/α]τ ′′)) v2) ∈ [∃β.([τ ′/α]τ ′′)]Eη′:δ′1↔δ′2

By the definition of back, this is equivalent to

(δ̂1([τ ′/α](λx : |∃β.τ ′′|. unpack[β, y] = x in(pack[β, backτ ′′(y)] as∃β.τ ′′)) v1),

δ̂2((λx : |∃β.[τ ′/α]τ ′′|. unpack[β, y] = x in(pack[β, back[τ ′/α]τ ′′(y)] as ∃β.[τ ′/α]τ ′′)) v2))

∈ [∃β.([τ ′/α]τ ′′)]Eη′:δ′1↔δ′2

70

Then by Lemma 7.5, this is equivalent to showing

(δ̂1(unpack[β, y] = v1 in(pack[β, ([τ ′/α]backτ ′′)(y)] as ∃β.[τ ′/α]τ ′′)),

δ̂2(unpack[β, y] = v2 in(pack[β, back[τ ′/α]τ ′′(y)] as∃β.[τ ′/α]τ ′′)))

∈ [∃β.([τ ′/α]τ ′′)]Eη′:δ′1↔δ′2

Since (v1, v2) ∈ [∃β.|τ ′′|]η′:δ′1↔δ′2 by assumption, we know by definition that there exist τ1 type,

τ2 type, e1 val, e2 val s.t. v1 = pack[τ1, e1] as∃β.[τ ′/α]|τ ′′| and v2 = pack[τ2, e2] as ∃β.|[τ ′/α]τ ′′|,
as well as a relation R ′ such that (e1, e2) ∈ [|τ ′′|]η′′:δ′′1↔δ′′2 , where δ′′1 = δ′1⊗β ↪→ τ1, δ′′2 = δ′2⊗β ↪→ τ2,

and η′′ = η′ ⊗ β ↪→ R ′. Thus we have that equivalently,

(δ̂1(unpack[β, y] = pack[τ1, e1] as ∃β.[τ ′/α]|τ ′′| in(pack[β, ([τ ′/α]backτ ′′)(y)] as ∃β.[τ ′/α]τ ′′)),

δ̂2(unpack[β, y] = pack[τ2, e2] as ∃β.|[τ ′/α]τ ′′| in(pack[β, back[τ ′/α]τ ′′(y)] as∃β.[τ ′/α]τ ′′)))

∈ [∃β.([τ ′/α]τ ′′)]Eη′:δ′1↔δ′2

Then by Lemma 7.5, this is equivalent to showing

(δ̂1(pack[τ1, ([τ1/β][τ ′/α]backτ ′′)(e1)] as∃β.[τ ′/α]τ ′′),

δ̂2(pack[τ2, ([τ2/β]back[τ ′/α]τ ′′)(e2)] as ∃β.[τ ′/α]τ ′′))

∈ [∃β.([τ ′/α]τ ′′)]Eη′:δ′1↔δ′2

We can then use the types and values from v1 and v2 as the ones that exist to make this hold by
using Lemma 8.3 for existentials, and use the relation R ′ so we just have to show that

(δ̂1(([τ1/β][τ ′/α]backτ ′′)(e1)), δ̂2(([τ2/β]back[τ ′/α]τ ′′)(e2))) ∈ [[τ ′/α]τ ′′]Eη′′:δ′′1↔δ′′2

However by induction we get that

(δ̂1([τ1/β][τ ′/α]backτ ′′), δ̂2([τ2/β]back[τ ′/α]τ ′′)) ∈ [|τ ′′| → [τ ′/α]τ ′′]η′′:δ′′1↔δ′′2

And we already know by our assumption as shown earlier that (e1, e2) ∈ [|τ ′′|]η′′:δ′′1↔δ′′2 , so combining
this with what we get by induction, the desired result follows.

Now we want to show the same for over, which is that

(δ̂1([τ ′/α]over∃β.τ ′′), δ̂2(over[τ ′/α](∃β.τ ′′))) ∈ [[τ ′/α](∃β.τ ′′)→ |∃β.τ ′′|]η′:δ′1↔δ′2
Then we assume that (v1, v2) ∈ [[τ ′/α](∃β.τ ′′)]η′:δ′1↔δ′2 , and so by definition we just need to show

(δ̂1([τ ′/α]over∃β.τ ′′) v1, δ̂2(over∃β.([τ ′/α]τ ′′)) v2) ∈ [|∃β.τ ′′|]Eη′:δ′1↔δ′2
By the definition of over, this is equivalent to

(δ̂1([τ ′/α](λx : ∃β.τ ′′. unpack[β, y] = x in(pack[β, overτ ′′(y)] as |∃β.τ ′′|)) v1),

δ̂2((λx : ∃β.[τ ′/α]τ ′′. unpack[β, y] = x in(pack[β, over[τ ′/α]τ ′′(y)] as |∃β.[τ ′/α]τ ′′|)) v2))

∈ [|∃β.τ ′′|]Eη′:δ′1↔δ′2
Then by Lemma 7.5, this is equivalent to showing

(δ̂1([τ ′/α] unpack[β, y] = v1 in(pack[β, overτ ′′(y)] as |∃β.τ ′′|)),

δ̂2(unpack[β, y] = v2 in(pack[β, over[τ ′/α]τ ′′(y)] as |∃β.[τ ′/α]τ ′′|)))
∈ [|∃β.τ ′′|]Eη′:δ′1↔δ′2

71

Since (v1, v2) ∈ [∃β.[τ ′/α]τ ′′]η′:δ′1↔δ′2
by assumption, we know by definition that there exist τ1 type,

τ2 type, e1 val, e2 val s.t. v1 = pack[τ1, e1] as ∃β.[τ ′/α]τ ′′ and v2 = pack[τ2, e2] as ∃β.[τ ′/α]τ ′′, as
well as a relation R ′ such that (e1, e2) ∈ [[τ ′/α]τ ′′]η′′:δ′′1↔δ′′2

, where δ′′1 = δ′1⊗β ↪→ τ1, δ′′2 = δ′2⊗β ↪→
τ2, and η′′ = η′ ⊗ β ↪→ R ′. Thus we have that equivalently,

(δ̂1([τ ′/α] unpack[β, y] = pack[τ1, e1] as∃β.[τ ′/α]τ ′′ in(pack[β, overτ ′′(y)] as |∃β.τ ′′|)),

δ̂2(unpack[β, y] = pack[τ2, e2] as∃β.[τ ′/α]τ ′′ in(pack[β, over[τ ′/α]τ ′′(y)] as |∃β.[τ ′/α]τ ′′|)))
∈ [|∃β.τ ′′|]Eη′:δ′1↔δ′2

Then by Lemma 7.5, this is equivalent to showing

(δ̂1(pack[τ1, ([τ1/β][τ ′/α]overτ ′′)(e1)] as[τ ′/α]|∃β.τ ′′|),

δ̂2(pack[τ2, ([τ2/β]over[τ ′/α]τ ′′)(e2)] as |∃β.[τ ′/α]τ ′′|))
∈ [∃β.|τ ′′|]Eη′:δ′1↔δ′2

We can then use the types and values from v1 and v2 as the ones that exist to make this hold by
using Lemma 8.3 for existentials, and use the relation R ′ so we just have to show that

(δ̂1(([τ1/β][τ ′/α]overτ ′′)(e1)), δ̂2(([τ2/β]over[τ ′/α]τ ′′)(e2))) ∈ [|τ ′′|]Eη′′:δ′′1↔δ′′2

However by induction we get that

(δ̂1([τ1/β][τ ′/α]overτ ′′), δ̂2([τ2/β]over[τ ′/α]τ ′′)) ∈ [[τ ′/α]τ ′′ → |τ ′′|]η′′:δ′′1↔δ′′2

And we already know by our assumption as shown earlier that (e1, e2) ∈ [[τ ′/α]τ ′′]η′′:δ′′1↔δ′′2
, so

combining this with what we get by induction, the desired result follows.

72

11.4 The Over Relation

Lemma 11.4. If ∆, α `S τ type and ∆ `S τ ′ type, then for any δ1 : ∆, δ2 : ∆, and η : δ1 ↔ δ2,
there exists an ST-closed relation R ∈ Val(δ̂1(|τ ′|))× Val(δ̂2(τ ′)) defined as

R = {(v1, v2) | (v1, δ̂2(overτ ′)(v2)) ∈ [|τ ′|]Eη:δ1↔δ2}

such that
(δ̂1([|τ ′|/α]backτ), δ̂2(back[τ ′/α]τ)) ∈ [|[τ ′/α]τ | → τ]η′:δ′1↔δ′2

(δ̂1([|τ ′|/α]overτ), δ̂2(over[τ ′/α]τ)) ∈ [τ → |[τ ′/α]τ |]η′:δ′1↔δ′2
Where η′ = η⊗α ↪→ R , δ′1 = δ1⊗α ↪→ δ̂1(|τ ′|), δ′2 = δ2⊗α ↪→ δ̂2(τ ′), We know that R is ST-closed
because it is defined in terms of [|τ ′|]Eη:δ1↔δ2 , which is itself ST-closed.

Proof. The proof is done by induction on the structure τ , and follows in much the same manner as
Lemma 11.3.

Case for τ = unit

In this case we want to show that

(δ̂1([|τ ′|/α]backunit), δ̂2(back[τ ′/α]unit)) ∈ [|[τ ′/α]unit| → unit]η′:δ′1↔δ′2

This is equivalent to
(backunit, backunit) ∈ [unit→ unit]η′:δ′1↔δ′2

This follows immediately from Reflexivity. The case for over works exactly the same.

Case for τ = int

In this case we want to show that

(δ̂1([|τ ′|/α]backint), δ̂2(back[τ ′/α]int)) ∈ [|[τ ′/α]int| → int]η′:δ′1↔δ′2

This is equivalent to
(backint, backint) ∈ [int→ int]η′:δ′1↔δ′2

This follows immediately from Reflexivity. The case for over works exactly the same.

Case for τ = α
In this case we want to show that

(δ̂1([|τ ′|/α]overα), δ̂2(over[τ ′/α]α)) ∈ [α→ |[τ ′/α]α|]η′:δ′1↔δ′2
This is equivalent to

(δ̂1([|τ ′|/α](λx : α.x)), δ̂2(overτ ′)) ∈ [α→ |τ ′|]η′:δ′1↔δ′2
And similarly equivalent to

(λx : δ̂1(|τ ′|).x, δ̂2(overτ ′)) ∈ [α→ |τ ′|]η′:δ′1↔δ′2

To show this we assume that (v1, v2) ∈ [α]η′:δ′1↔δ′2
, which implies that (v1, v2) ∈ R , and show that

((λx : δ̂1(|τ ′|).x) v1, δ̂2(overτ ′) v2) ∈ [|τ ′|]Eη′:δ′1↔δ′2

73

However, since |τ ′| doesn’t reference α, we can equivalently show that

(v1, δ̂2(overτ ′) v2) ∈ [|τ ′|]Eη:δ1↔δ2

This follows immediately from our definition of R .

Now we need to show the other half, that

(δ̂1([|τ ′|/α]backα), δ̂2(over[τ ′/α]α)) ∈ [|[τ ′/α]α| → |α|]η′:δ′1↔δ′2
This is equivalent to

(δ̂1([|τ ′|/α](λx : α.x)), δ̂2(backτ ′)) ∈ [|τ ′| → α]η′:δ′1↔δ′2

And similarly equivalent to

(λx : δ̂1(|τ ′|).x, δ̂2(backτ ′)) ∈ [|τ ′| → α]η′:δ′1↔δ′2

To show this we assume that (v1, v2) ∈ [|τ ′|]η′:δ′1↔δ′2 , and show that

((λx : δ̂1(|τ ′|).x) v1, δ̂2(backτ ′) v2) ∈ [α]Eη′:δ′1↔δ′2

This is equivalent to showing that

(v1, δ̂2(backτ ′) v2) ∈ [α]Eη′:δ′1↔δ′2

Which is the same as showing that (v1, δ̂2(backτ ′) v2) ∈ R E. We know by Lemma 11.1 that

v2
∼=δ̂2(τ ′)

δ̂2(overτ ′)(δ̂2(backτ ′) v2)

So by Lemma 9.3, we know from our assumption that

(v1, δ̂2(overτ ′)(δ̂2(backτ ′) v2)) ∈ [|τ ′|]Eη′:δ′1↔δ′2

Since v1 ↓, this implies that δ̂2(overτ ′) v2 ↓, so we have that δ̂2(overτ ′) v2 7→∗ v′2 for some value
v′2. Then we know by Lemma 7.5 that

(v1, δ̂2(overτ ′) v
′
2) ∈ [|τ ′|]Eη′:δ′1↔δ′2

But by definition this implies that (v1, v
′
2) ∈ R , and therefore that (v1, δ̂2(backτ ′) v2) ∈ R E.

Case for τ = τ1 × τ2

In this case we want to show that

(δ̂1([|τ ′|/α]overτ1×τ2), δ̂2(over[τ ′/α](τ1×τ2))) ∈ [τ1 × τ2 → |[τ ′/α](τ1 × τ2)|]η′:δ′1↔δ′2

To show this we assume that (v1, v2) ∈ [τ1 × τ2]η′:δ′1↔δ′2
, and show

(δ̂1([|τ ′|/α]overτ1×τ2) v1, δ̂2(over[τ ′/α](τ1×τ2)) v2) ∈ [|[τ ′/α](τ1 × τ2)|]Eη′:δ′1↔δ′2
By the definition of over, this is the same as showing

(δ̂1(([|τ ′|/α](λx : τ1 × τ2.〈overτ1(π1x), overτ2(π2x〉)))(v1)),

δ̂2(λx : [τ ′/α](τ1 × τ2).〈over[τ ′/α]τ1(π1x), over[τ ′/α]τ2(π2x)〉(v2))) ∈ [|[τ ′/α](τ1 × τ2)|]Eη′:δ′1↔δ′2

74

By Lemma 7.5, this is equivalent to showing

(δ̂1(〈([|τ ′|/α]overτ1)(π1v1), ([|τ ′|/α]overτ2)(π2v1)〉),

δ̂2(〈over[τ ′/α]τ1(π1v2), over[τ ′/α]τ2(π2v2)〉)) ∈ [|[τ ′/α]τ1| × |[τ ′/α]τ2|]Eη′:δ′1↔δ′2
Then using Lemma 8.3 for pairs we just need to show that

(δ̂1(([|τ ′|/α]overτ1)(π1v1)), δ̂2(over[τ ′/α]τ1(π1v2))) ∈ [|[τ ′/α]τ1|]Eη′:δ′1↔δ′2

(δ̂1(([|τ ′|/α]overτ2)(π2v1)), δ̂2(over[τ ′/α]τ2(π2v2))) ∈ [|[τ ′/α]τ2|]Eη′:δ′1↔δ′2
However by induction we get that

(δ̂1([|τ ′|/α]overτ1), δ̂2(over[τ ′/α]τ1)) ∈ [τ1 → |[τ ′/α]τ1|]η′:δ′1↔δ′2

(δ̂1([|τ ′|/α]overτ2), δ̂2(over[τ ′/α]τ2)) ∈ [τ2 → |[τ ′/α]τ2|]η′:δ′1↔δ′2
We also know by our assumption and the definition of the type relation that (π1v1, π1v2) ∈
[τ1]

E
η′:δ′1↔δ′2

and (π2v1, π2v2) ∈ [τ2]
E
η′:δ′1↔δ′2

, from which the desired result follows by Lemma 8.3
for functions.

Now we want to show this for back as well, so we want to show that

(δ̂1([|τ ′|/α]backτ1×τ2), δ̂2(back[τ ′/α](τ1×τ2))) ∈ [|[τ ′/α](τ1 × τ2)| → τ1 × τ2]η′:δ′1↔δ′2

To show this we assume that (v1, v2) ∈ [|[τ ′/α](τ1 × τ2)|]η′:δ′1↔δ′2 , and show

(δ̂1([|τ ′|/α]backτ1×τ2) v1, δ̂2(back[τ ′/α](τ1×τ2)) v2) ∈ [τ1 × τ2]
E
η′:δ′1↔δ′2

By the definition of back, this is the same as showing

(δ̂1([|τ ′|/α]λx : |τ1 × τ2|.〈backτ1(π1x), backτ2(π2x)〉 v1),

δ̂2(λx : |[τ ′/α](τ1 × τ2)|.〈back[τ ′/α]τ1(π1x), back[τ ′/α]τ2(π2x)〉 v2)) ∈ [τ1 × τ2]
E
η′:δ′1↔δ′2

By Lemma 7.5, this is equivalent to showing

(δ̂1(〈([|τ ′|/α]backτ1)(π1v1), ([|τ ′|/α]backτ2)(π2v1)〉),

δ̂2(〈back[τ ′/α]τ1(π1v2), back[τ ′/α]τ2(π2v2)〉)) ∈ [τ1 × τ2]
E
η′:δ′1↔δ′2

Then using Lemma 8.3 for pairs we just need to show that

(δ̂1(([|τ ′|/α]backτ1)(π1v1)), δ̂2(back[τ ′/α]τ1(π1v2))) ∈ [τ1]
E
η′:δ′1↔δ′2

(δ̂1(([|τ ′|/α]backτ2)(π2v1)), δ̂2(back[τ ′/α]τ2(π2v2))) ∈ [τ2]
E
η′:δ′1↔δ′2

However by induction we get that

(δ̂1([|τ ′|/α]backτ1), δ̂2(back[τ ′/α]τ1)) ∈ [|[τ ′/α]τ1| → τ1]η′:δ′1↔δ′2

(δ̂1([|τ ′|/α]backτ2), δ̂2(back[τ ′/α]τ2)) ∈ [|[τ ′/α]τ2| → τ2]η′:δ′1↔δ′2

We also know by our assumption and the definition of the type relation that (π1v1, π1v2) ∈
[|[τ ′/α]τ1|]Eη′:δ′1↔δ′2 and (π2v1, π2v2) ∈ [|[τ ′/α]τ2|]Eη′:δ′1↔δ′2 , from which the desired result follows
by Lemma 8.3 for functions.

75

Case for τ = τ1 → τ2

In this case we want to show that

(δ̂1([|τ ′|/α]backτ1→τ2), δ̂2(back[τ ′/α](τ1→τ2))) ∈ [|[τ ′/α](τ1 → τ2)| → τ1 → τ2]η′:δ′1↔δ′2

We assume that

(f1, f2) ∈ [|[τ ′/α](τ1 → τ2)|]η′:δ′1↔δ′2 = [∃β.(|[τ ′/α]τ1| × β ⇒ |[τ ′/α]τ2|)× β]η′:δ′1↔δ′2
So by definition we just need to show that

(δ̂1([|τ ′|/α]backτ1→τ2) f1, δ̂2(back[τ ′/α]τ1→[τ ′/α]τ2) f2) ∈ [τ1 → τ2]
E
η′:δ′1↔δ′2

By the definition of back this is the same as showing

(δ̂1(([|τ ′|/α](λf : |τ1 → τ2|.λy : τ1. unpack[β, g] = f in backτ2((π1g)̂〈overτ1y, π2g〉))) f1),

δ̂2((λf : |[τ ′/α]τ1 → [τ ′/α]τ2|.λy : [τ ′/α]τ1. unpack[β, g] = f in

back[τ ′/α]τ2((π1g)̂〈over[τ ′/α]τ1y, π2g〉)) f2)) ∈ [τ1 → τ2]
E
η′:δ′1↔δ′2

Then by Lemma 7.5, this is equivalent to showing

(δ̂1((λy : [|τ ′|/α]τ1. unpack[β, g] = f1 in([|τ ′|/α]backτ2)((π1g)̂〈([|τ ′|/α]overτ1)y, π2g〉))),

δ̂2(λy : [τ ′/α]τ1. unpack[β, g] = f2 in back[τ ′/α]τ2((π1g)̂〈over[τ ′/α]τ1y, π2g〉)))
∈ [τ1 → τ2]η′:δ′1↔δ′2

To show this we assume that (v1, v2) ∈ [τ1]η′:δ′1↔δ′2
and show that

(δ̂1(λy : [|τ ′|/α]τ1. unpack[β, g] = f1 in([|τ ′|/α]backτ2)((π1g)̂〈([|τ ′|/α]overτ1)y, π2g〉)) v1,

δ̂2(λy : [τ ′/α]τ1. unpack[β, g] = f2 in back[τ ′/α]τ2((π1g)̂〈over[τ ′/α]τ1y, π2g〉)) v2)

∈ [τ2]
E
η′:δ′1↔δ′2

Then by Lemma 7.5, this is equivalent to showing

(δ̂1(unpack[β, g] = f1 in([|τ ′|/α]backτ2)((π1g)̂〈([|τ ′|/α]overτ1)v1, π2g〉)),

δ̂2(unpack[β, g] = f2 in back[τ ′/α]τ2((π1g)̂〈over[τ ′/α]τ1v2, π2g〉)))
∈ [τ2]

E
η′:δ′1↔δ′2

Since f1 is a value, we know by rule V pack that it is of the form pack[τ ′1, g1] as |[τ ′/α](τ1 → τ2)|
for appropriate type τ ′1 and value g1. Similarly we can write f2 as pack[τ ′2, g2] as |[τ ′/α](τ1 → τ2)|.
Thus we can show that

(δ̂1(unpack[β, g] = pack[τ ′1, g1] as |[τ ′/α](τ1 → τ2)| in
([|τ ′|/α]backτ2)((π1g)̂〈([|τ ′|/α]overτ1)v1, π2g〉)),

δ̂2(unpack[β, g] = pack[τ ′2, g2] as |[τ ′/α](τ1 → τ2)| in back[τ ′/α]τ2((π1g)̂〈over[τ ′/α]τ1v2, π2g〉)))
∈ [τ2]

E
η′:δ′1↔δ′2

Thus by Lemma 7.5, we can just show that

(δ̂1(([|τ ′|/α]backτ2)((π1g1)̂〈([|τ ′|/α]overτ1)v1, π2g1〉)),

δ̂2(back[τ ′/α]τ2((π1g2)̂〈over[τ ′/α]τ1v2, π2g2〉))) ∈ [τ2]
E
η:δ1↔δ2

76

However since we know by induction that

(δ̂1([|τ ′|/α]backτ2), δ̂2(back[τ ′/α]τ2)) ∈ [|[τ ′/α]τ2| → τ2]η′:δ′1↔δ′2

So by Lemma 8.3 we just have to show that

δ̂1((π1g1)̂〈([|τ ′|/α]overτ1)v1, π2g1〉), δ̂2((π1g2)̂〈over[τ ′/α]τ1v2, π2g2〉)) ∈ [|[τ ′/α]τ2|]Eη′:δ′1↔δ′2

Now by our assumption that (f1, f2) ∈ [|[τ ′/α](τ1 → τ2)|]η′:δ′1↔δ′2 , we know that there exists a

relation R ′ ⊆ Val(τ1)× Val(τ2) such that

(g1, g2) ∈ [(|[τ ′/α]τ1| × β ⇒ |[τ ′/α]τ2|)× β]η′′:δ′′1↔δ′′2

Where δ′′1 = δ′1⊗β ↪→ τ ′1, δ′′2 = δ′2⊗β ↪→ τ ′2, and η′′ = η′⊗β ↪→ R ′. This tells us that by definition,

(π1g1, π1g2) ∈ [|[τ ′/α]τ1| × β ⇒ |[τ ′/α]τ2|]Eη′′:δ′′1↔δ′′2

(π2g1, π2g2) ∈ [β]Eη′′:δ′′1↔δ′′2
We also know by induction that

(δ̂1([|τ ′|/α]overτ1), δ̂2(over[τ ′/α]τ1)) ∈ [τ1 → |[τ ′/α]τ1|]η′:δ′1↔δ′2
Which by definition tells us that

(δ̂1([|τ ′|/α]overτ1) v1, δ̂2(over[τ ′/α]τ1) v2) ∈ [|[τ ′/α]τ1|]Eη′:δ′1↔δ′2
Which then by Lemma 8.3 for pairs we know that

(δ̂1(〈[|τ ′|/α]overτ1) v1, π2g1〉, δ̂2(〈over[τ ′/α]τ1) v2, π2g1〉) ∈ [|[τ ′/α]τ1| × β]Eη′′:δ′′1↔δ′′2
Then again by Lemma 8.3 for functions we know that

δ̂1((π1g1)̂〈([|τ ′|/α]overτ1)v1, π2g1〉), δ̂2((π1g2)̂〈over[τ ′/α]τ1v2, π2g2〉)) ∈ [|[τ ′/α]τ2|]Eη′:δ′1↔δ′2
Which no longer depends on β, so it is what we wanted to show.

Now we need to show the corresponding case for over, that is

(δ̂1([|τ ′|/α]overτ1→τ2), δ̂2(over[τ ′/α](τ1→τ2))) ∈ [(τ1 → τ2)→ |[τ ′/α](τ1 → τ2)|]η′:δ′1↔δ′2
We assume that

(f1, f2) ∈ [τ1 → τ2]η′:δ′1↔δ′2
So by definition we just need to show that

(δ̂1([|τ ′|/α]overτ1→τ2) f1, δ̂2(over[τ ′/α]τ1→[τ ′/α]τ2) f2) ∈ [|[τ ′/α](τ1 → τ2)|]Eη′:δ′1↔δ′2
By the definition of over this is the same as showing

(δ̂1(([|τ ′|/α](λf : τ1 → τ2. pack[τ1 → τ2, 〈λ̂y : |τ1| × (τ1 → τ2).

overτ2((π2y) (backτ1(π1y))), f〉] as |τ1 → τ2|)) f1),

δ̂2((λf : [τ ′/α]τ1 → [τ ′/α]τ2. pack[τ1 → τ2, 〈λ̂y : |[τ ′/α]τ1| × (τ1 → τ2).

over[τ ′/α]τ2((π2y) (back[τ ′/α]τ1(π1y))), f〉] as |[τ ′/α]τ1 → [τ ′/α]τ2|) f2))

∈ [|[τ ′/α]τ1 → [τ ′/α]τ2|]Eη′:δ′1↔δ′2

77

Then by Lemma 7.5, this is equivalent to showing

(δ̂1(pack[[|τ ′|/α](τ1 → τ2), 〈λ̂y : |τ1| × (τ1 → τ2).

overτ2((π2y) (backτ1(π1y))), f1〉] as |[τ ′/α]τ1 → [τ ′/α]τ2|),

δ̂2(pack[τ1 → τ2, 〈λ̂y : |[τ ′/α]τ1| × (τ1 → τ2).

over[τ ′/α]τ2((π2y) (back[τ ′/α]τ1(π1y))), f2〉] as |[τ ′/α]τ1 → [τ ′/α]τ2|))
∈ [∃β.(|[τ ′/α]τ1| × β ⇒ |[τ ′/α]τ2|)× β]η′:δ′1↔δ′2

To show this, we pick R ′ = [τ1 → τ2] and use the definition of the type relation to show that

(δ̂1([|τ ′|/α]〈λ̂y : |τ1| × (τ1 → τ2).overτ2((π2y) (backτ1(π1y))), f1〉),

δ̂2(〈λ̂y : |[τ ′/α]τ1| × (τ1 → τ2).over[τ ′/α]τ2((π2y) (back[τ ′/α]τ1(π1y))), f2〉)
∈ [(|[τ ′/α]τ1| × β ⇒ |[τ ′/α]τ2|)× β]η′′:δ′′1↔δ′′2

Where δ′′1 = δ′1 ⊗ β ↪→ τ1 → τ2, δ′′2 = δ′2 ⊗ β ↪→ τ1 → τ2, and η′′ = η′ ⊗ β ↪→ R ′. We already know
that (f1, f2) ∈ [β]η′′:δ′′1↔δ′′2

= R ′ = [τ1 → τ2] by assumption, so by definition we just need to show
that

(δ̂1([|τ ′|/α](λ̂y : |τ1| × (τ1 → τ2).overτ2((π2y) (backτ1(π1y))))),

δ̂2(λ̂y : |[τ ′/α]τ1| × (τ1 → τ2).over[τ ′/α]τ2((π2y) (back[τ ′/α]τ1(π1y)))))

∈ [|[τ ′/α]τ1| × β ⇒ |[τ ′/α]τ2|]η′′:δ′′1↔δ′′2

To do this we assume that (v1, v2) ∈ [|[τ ′/α]τ1| × β]η′′:δ′′1↔δ′′2 and show that

(δ̂1((λ̂y : |[τ ′/α]τ1| × (τ1 → τ2).([|τ ′|/α]overτ2)((π2y) (([|τ ′|/α]backτ1)(π1y)))))̂v1,

δ̂2(λ̂y : |[τ ′/α]τ1| × (τ1 → τ2).over[τ ′/α]τ2((π2y) (back[τ ′/α]τ1(π1y))))̂v2)

∈ [|[τ ′/α]τ2|]Eη′′:δ′′1↔δ′′2
So by Lemma 7.5, this is equivalent to showing

(δ̂1(([|τ ′|/α]overτ2)((π2v1) (([|τ ′|/α]backτ1)(π1v1)))),

δ̂2(over[τ ′/α]τ2((π2v2) (back[τ ′/α]τ1(π1v2))))) ∈ [|[τ ′/α]τ2|]Eη′′:δ′′1↔δ′′2
However by induction we know that

(δ̂1([|τ ′|/α]overτ2), δ̂2(over[τ ′/α]τ2)) ∈ [τ2 → |[τ ′/α]τ2|]η′:δ′1↔δ′2
So by Lemma 8.3 we just need to show that

(δ̂1((π2v1) (([|τ ′|/α]backτ1)(π1v1))), δ̂2((π2v2) (back[τ ′/α]τ1(π1v2))))

∈ [τ2]
E
η′′:δ′′1↔δ′′2

By assumption we know that (π2v1, π2v2) ∈ [β]η′:δ′1↔δ′2
= [τ1 → τ2]η′′:δ′′1↔δ′′2

, so again by
Lemma 8.3 this is the same as showing that

(δ̂1(([|τ ′|/α]backτ1)(π1v1)), δ̂2(back[τ ′/α]τ1(π1v2))) ∈ [τ1]
E
η′′:δ′′1↔δ′′2

We also know by induction that

(δ̂1([|τ ′|/α]backτ1), δ̂2(over[τ ′/α]τ1)) ∈ [|[τ ′/α]τ1| → τ1]η′:δ′1↔δ′2

78

So by Lemma 8.3 all we have to do to show the above is show that

(δ̂1(π1v1), δ̂2(π1v2)) ∈ [|[τ ′/α]τ1|]Eη′′:δ′′1↔δ′′2

However this follows from our assumption that (v1, v2) ∈ [|[τ ′/α]τ1| × β]η′′:δ′′1↔δ′′2 , and so the result
follows.

Case for τ = ∀β.τ ′′
In this case we want to show that

(δ̂1([|τ ′|/α]over∀β.τ ′′), δ̂2(over[τ ′/α](∀β.τ ′′))) ∈ [∀β.τ ′′ → |[τ ′/α](∀β.τ ′′)|]η′:δ′1↔δ′2

Then we assume that (v1, v2) ∈ [∀β.τ ′′]η′:δ′1↔δ′2 , and so by definition we just need to show

(δ̂1([|τ ′|/α]over∀β.τ ′′) v1, δ̂2(over∀β.([τ ′/α]τ ′′)) v2) ∈ [|∀β.([τ ′/α]τ ′′)|]Eη′:δ′1↔δ′2
By the definition of over, this is equivalent to

(δ̂1([|τ ′|/α](λx : (∀β.τ ′′).Λβ.overτ ′′(x[β])) v1),

δ̂2((λx : (∀β.τ ′′).Λβ.over[τ ′/α]τ ′′(x[β])) v2)) ∈ [|∀β.([τ ′/α]τ ′′)|]Eη′:δ′1↔δ′2
Then by Lemma 7.5, this is equivalent to showing

(δ̂1(Λβ.([|τ ′|/α]overτ ′′)(v1[β])),

δ̂2(Λβ.over[τ ′/α]τ ′′(v2[β]))) ∈ [∀β.|[τ ′/α]τ ′′|]η′:δ′1↔δ′2

Then by definition, we just need to show that for all τ1 type, τ2 type, and R ′ ⊆ Val(τ1)× Val(τ2)
s.t. R ′ = R ′ST,

(δ̂1(Λβ.([|τ ′|/α]overτ ′′)(v1[β]))[τ1],

δ̂2(Λβ.over[τ ′/α]τ ′′(v2[β]))[τ2]) ∈ [|[τ ′/α]τ ′′|]Eη′′:δ′′1↔δ′′2

Where δ′′1 = δ′1 ⊗ β ↪→ τ1, δ′′2 = δ′2 ⊗ β ↪→ τ2, and η′′ = η′ ⊗ β ↪→ R ′. So by Lemma 7.5, this is
equivalent to showing

(δ̂1(([|τ ′|/α]overτ ′′)(v1[τ1])), δ̂2(over[τ ′/α]τ ′′(v2[τ2]))) ∈ [|[τ ′/α]τ ′′|]Eη′′:δ′′1↔δ′′2
However, we get by induction that

(δ̂′1([|τ ′|/α]overτ ′′), δ̂
′
2(over[τ ′/α]τ ′′)) ∈ [τ ′′ → |[τ ′/α]τ ′′|]η′′:δ′′1↔δ′′2

And by our assumption and the definition of the type relation we know that

(v1[τ1], v2[τ2]) ∈ [τ ′′]Eη′′:δ′′1↔δ′′2

So with the above, the desired result follows by Lemma 8.3 for functions.

Now we want to show the same for back, which is that

(δ̂1([|τ ′|/α]back∀β.τ ′′), δ̂2(back[τ ′/α](∀β.τ ′′))) ∈ [|[τ ′/α](∀β.τ ′′)| → ∀β.τ ′′]η′:δ′1↔δ′2

Then we assume that (v1, v2) ∈ [|[τ ′/α](∀β.τ ′′)|]η′:δ′1↔δ′2 , and so by definition we just need to show

(δ̂1([|τ ′|/α]back∀β.τ ′′) v1, δ̂2(back∀β.([τ ′/α]τ ′′)) v2) ∈ [∀β.τ ′′]Eη′:δ′1↔δ′2

79

By the definition of back, this is equivalent to

(δ̂1([|τ ′|/α](λx : (∀β.τ ′′).Λβ.backτ ′′(x[β])) v1),

δ̂2((λx : (∀β.τ ′′).Λβ.back[τ ′/α]τ ′′(x[β])) v2)) ∈ [∀β.τ ′′]Eη′:δ′1↔δ′2
Then by Lemma 7.5, this is equivalent to showing

(δ̂1(Λβ.([|τ ′|/α]backτ ′′)(v1[β])), δ̂2(Λβ.back[τ ′/α]τ ′′(v2[β]))) ∈ [∀β.τ ′′]η′:δ′1↔δ′2

Then by definition, we just need to show that for all τ1 type, τ2 type, and R ′ ⊆ Val(τ1)× Val(τ2)
s.t. R ′ = R ′ST,

(δ̂1(Λβ.([|τ ′|/α]backτ ′′)(v1[β])[τ1]), δ̂2(Λβ.back[τ ′/α]τ ′′(v2[β]))[τ2]) ∈ [τ ′′]Eη′′:δ′′1↔δ′′2

Where δ′′1 = δ′1 ⊗ β ↪→ τ1, δ′′2 = δ′2 ⊗ β ↪→ τ2, and η′′ = η′ ⊗ β ↪→ R ′. So by Lemma 7.5, this is
equivalent to showing

(δ̂1(([|τ ′|/α]backτ ′′)(v1[τ1])), δ̂2(back[τ ′/α]τ ′′(v2[τ2]))) ∈ [τ ′′]Eη′′:δ′′1↔δ′′2

However, we get by induction that

(δ̂′1([|τ ′|/α]backτ ′′), δ̂
′
2(back[τ ′/α]τ ′′)) ∈ [|[τ ′/α]τ ′′| → τ ′′]η′′:δ′′1↔δ′′2

And by our assumption and the definition of the type relation we know that

(v1[τ1], v2[τ2]) ∈ [|[τ ′/α]τ ′′|]Eη′′:δ′′1↔δ′′2
So with the above, the desired result follows by Lemma 8.3 for functions.

Case for τ = ∃β.τ ′′
In this case we want to show that

(δ̂1([|τ ′|/α]over∃β.τ ′′), δ̂2(over[τ ′/α](∃β.τ ′′))) ∈ [∃β.τ ′′ → |[τ ′/α](∃β.τ ′′)|]η′:δ′1↔δ′2

Then we assume that (v1, v2) ∈ [∃β.τ ′′]η′:δ′1↔δ′2 , and so by definition we just need to show

(δ̂1([|τ ′|/α]over∃β.τ ′′) v1, δ̂2(over∃β.([τ ′/α]τ ′′)) v2) ∈ [|∃β.([τ ′/α]τ ′′)|]Eη′:δ′1↔δ′2
By the definition of over, this is equivalent to

(δ̂1([|τ ′|/α](λx : (∃β.τ ′′). unpack[β, y] = x in(pack[β, overτ ′′(y)] as |∃β.τ ′′|)) v1),

δ̂2((λx : (∃β.[τ ′/α]τ ′′). unpack[β, y] = x in(pack[β, over[τ ′/α]τ ′′(y)] as |∃β.[τ ′/α]τ ′′|)) v2))

∈ [|∃β.([τ ′/α]τ ′′)|]Eη′:δ′1↔δ′2
Then by Lemma 7.5, this is equivalent to showing

(δ̂1(unpack[β, y] = v1 in(pack[β, ([|τ ′|/α]overτ ′′)(y)] as |∃β.[τ ′/α]τ ′′|)),

δ̂2(unpack[β, y] = v2 in(pack[β, over[τ ′/α]τ ′′(y)] as |∃β.[τ ′/α]τ ′′|)))
∈ [|∃β.([τ ′/α]τ ′′)|]Eη′:δ′1↔δ′2

Since (v1, v2) ∈ [∃β.τ ′′]η′:δ′1↔δ′2 by assumption, we know by definition that there exist τ1 type,

τ2 type, e1 val, e2 val s.t. v1 = pack[τ1, e1] as ∃β.[|τ ′|/α]τ ′′ and v2 = pack[τ2, e2] as ∃β.[τ ′/α]τ ′′, as

80

well as a relation R ′ such that (e1, e2) ∈ [τ ′′]η′′:δ′′1↔δ′′2
, where δ′′1 = δ′1 ⊗ β ↪→ τ1, δ′′2 = δ′2 ⊗ β ↪→ τ2,

and η′′ = η′ ⊗ β ↪→ R ′. Thus we have that equivalently,

(δ̂1(unpack[β, y] = pack[τ1, e1] as∃β.[|τ ′|/α]τ ′′ in(pack[β, ([|τ ′|/α]overτ ′′)(y)] as |∃β.[τ ′/α]τ ′′|)),

δ̂2(unpack[β, y] = pack[τ2, e2] as∃β.[τ ′/α]τ ′′ in(pack[β, over[τ ′/α]τ ′′(y)] as |∃β.[τ ′/α]τ ′′|)))
∈ [|∃β.([τ ′/α]τ ′′)|]Eη′:δ′1↔δ′2

Then by Lemma 7.5, this is equivalent to showing

(δ̂1(pack[τ1, ([τ1/β][|τ ′|/α]overτ ′′)(e1)] as |∃β.[τ ′/α]τ ′′|),

δ̂2(pack[τ2, ([τ2/β]over[τ ′/α]τ ′′)(e2)] as |∃β.[τ ′/α]τ ′′|))
∈ [|∃β.([τ ′/α]τ ′′)|]Eη′:δ′1↔δ′2

We can then use the types and values from v1 and v2 as the ones that exist to make this hold by
using Lemma 8.3 for existentials, and use the relation R ′ so we just have to show that

(δ̂1(([τ1/β][|τ ′|/α]overτ ′′)(e1)), δ̂2(([τ2/β]over[τ ′/α]τ ′′)(e2))) ∈ [|[τ ′/α]τ ′′|]Eη′′:δ′′1↔δ′′2

However by induction we get that

(δ̂1([τ1/β][|τ ′|/α]overτ ′′), δ̂2([τ2/β]over[τ ′/α]τ ′′)) ∈ [τ ′′ → |[τ ′/α]τ ′′|]η′′:δ′′1↔δ′′2

And we already know by our assumption as shown earlier that (e1, e2) ∈ [τ ′′]η′′:δ′′1↔δ′′2
, so combining

this with what we get by induction, the desired result follows.

Now we want to show the same for back, which is that

(δ̂1([|τ ′|/α]back∃β.τ ′′), δ̂2(back[τ ′/α](∃β.τ ′′))) ∈ [|[τ ′/α](∃β.τ ′′)| → ∃β.τ ′′]η′:δ′1↔δ′2

Then we assume that (v1, v2) ∈ [|[τ ′/α](∃β.τ ′′)|]η′:δ′1↔δ′2 , and so by definition we just need to show

(δ̂1([|τ ′|/α]back∃β.τ ′′) v1, δ̂2(back∃β.([τ ′/α]τ ′′)) v2) ∈ [∃β.τ ′′]Eη′:δ′1↔δ′2

By the definition of back, this is equivalent to

(δ̂1([|τ ′|/α](λx : |∃β.τ ′′|. unpack[β, y] = x in(pack[β, backτ ′′(y)] as∃β.τ ′′)) v1),

δ̂2((λx : |∃β.[τ ′/α]τ ′′|. unpack[β, y] = x in(pack[β, back[τ ′/α]τ ′′(y)] as∃β.[τ ′/α]τ ′′)) v2))

∈ [∃β.τ ′′]Eη′:δ′1↔δ′2

Then by Lemma 7.5, this is equivalent to showing

(δ̂1([|τ ′|/α] unpack[β, y] = v1 in(pack[β, backτ ′′(y)] as∃β.τ ′′)),

δ̂2(unpack[β, y] = v2 in(pack[β, back[τ ′/α]τ ′′(y)] as ∃β.[τ ′/α]τ ′′)))

∈ [∃β.τ ′′]Eη′:δ′1↔δ′2

Since (v1, v2) ∈ [|∃β.[τ ′/α]τ ′′|]η′:δ′1↔δ′2 by assumption, we know by definition that there exist

τ1 type, τ2 type, e1 val, e2 val s.t. v1 = pack[τ1, e1] as |∃β.[τ ′/α]τ ′′| and

81

v2 = pack[τ2, e2] as |∃β.[τ ′/α]τ ′′|, as well as a relation R ′ such that (e1, e2) ∈ [|[τ ′/α]τ ′′|]η′′:δ′′1↔δ′′2 ,

where δ′′1 = δ′1⊗β ↪→ τ1, δ′′2 = δ′2⊗β ↪→ τ2, and η′′ = η′⊗β ↪→ R ′. Thus we have that equivalently,

(δ̂1([|τ ′|/α] unpack[β, y] = pack[τ1, e1] as |∃β.[τ ′/α]τ ′′| in(pack[β, backτ ′′(y)] as∃β.τ ′′)),

δ̂2(unpack[β, y] = pack[τ2, e2] as |∃β.[τ ′/α]τ ′′| in(pack[β, back[τ ′/α]τ ′′(y)] as ∃β.[τ ′/α]τ ′′)))

∈ [|∃β.τ ′′|]Eη′:δ′1↔δ′2

Then by Lemma 7.5, this is equivalent to showing

(δ̂1(pack[τ1, ([τ1/β][|τ ′|/α]backτ ′′)(e1)] as∃β.[|τ ′|/α]τ ′′),

δ̂2(pack[τ2, ([τ2/β]back[τ ′/α]τ ′′)(e2)] as ∃β.[τ ′/α]τ ′′))

∈ [∃β.τ ′′]Eη′:δ′1↔δ′2

We can then use the types and values from v1 and v2 as the ones that exist to make this hold by
using Lemma 8.3 for existentials, and use the relation R ′ so we just have to show that

(δ̂1(([τ1/β][|τ ′|/α]backτ ′′)(e1)), δ̂2(([τ2/β]back[τ ′/α]τ ′′)(e2))) ∈ [τ ′′]Eη′′:δ′′1↔δ′′2

However by induction we get that

(δ̂1([τ1/β][|τ ′|/α]backτ ′′), δ̂2([τ2/β]back[τ ′/α]τ ′′)) ∈ [|[τ ′/α]τ ′′| → τ ′′]η′′:δ′′1↔δ′′2

And we already know by our assumption as shown earlier that (e1, e2) ∈ [|[τ ′/α]τ ′′|]η′′:δ′′1↔δ′′2 , so
combining this with what we get by induction, the desired result follows.

82

11.5 Translation Equivalence

Theorem 11.5. If ∆; Γ `S e : τ ē, then ∆; Γ ` e ∼= backτ ([overΓ/Γ]ē) : τ , where [overΓ/Γ] =
[overτ1(x1)/x1]...[overτn(xn)/xn] for Γ = x1 : τ1, ..., xn : τn.

Proof. By induction over the translation rules.

Case for Runit
The rule for this case is

∆; Γ `S () : unit ()
Runit

In this case we know that ∆; Γ `S () : unit (). We want to show that ∆; Γ ` () ∼=
backunit([overΓ/Γ]()) : unit. However, this follows immediately from the fact that ∆; Γ `
backunit([overΓ/Γ]()) ∼= () : unit.

Case for Rvar
The rule for this case is

Γ(x) = τ

∆; Γ `S x : τ x
Rvar

In this case we know that ∆; Γ `S x : τ x. We want to show that ∆; Γ ` x ∼= backτ ([overΓ/Γ]x) :
τ . However, we know that ∆; Γ ` backτ ([overΓ/Γ]x) ∼= backτ (overτ (x)) and by Lemma 11.1 we
have that ∆; Γ ` backτ (overτ (x)) ∼= x : τ . The desired result follows from transitivity.

Case for Rint
The rule for this case is

∆; Γ `S n : int n
Rint

In this case we know that ∆; Γ `S n : int n. We want to show that

∆; Γ ` n ∼= backint([overΓ/Γ]n) : int

However, this follows immediately from the fact that ∆; Γ ` backint([overΓ/Γ]n) ∼= n : int.

Case for Rintop
The rule for this case is

∆; Γ `S e1 : int ē1 ∆; Γ `S e2 : int ē2

∆; Γ `S e1 p e2 : int ē1 p ē2
Rintop

In this case we know that ∆; Γ `S e1 p e2 : int e′1 p e
′
2. We want to show that

∆; Γ ` e1 p e2
∼= backint([overΓ/Γ](e′1 p e

′
2)) : int

By induction we get that

∆; Γ ` e1
∼= backint([overΓ/Γ]e′1) : int

∆; Γ ` e2
∼= backint([overΓ/Γ]e′2) : int

83

So by the definition of backint, we get the following:

∆; Γ ` e1 p e2
∼= (backint([overΓ/Γ]e′1)) p(backint([overΓ/Γ]e′2))
∼= ((λx : int.x) ([overΓ/Γ]e′1)) p((λx : int.x) ([overΓ/Γ]e′2))
∼= ([overΓ/Γ]e′1) p([overΓ/Γ]e′2)
∼= [overΓ/Γ](e′1 p e

′
2)

∼= (λx : int.x) ([overΓ/Γ](e′1 p e
′
2))

∼= backint([overΓ/Γ](e′1 p e
′
2))

: int

Case for Rifz
The rule for this case is

∆; Γ `S e1 : int ē1 ∆; Γ `S e2 : τ ē2 ∆; Γ `S e3 : τ ē3

∆; Γ `S ifz(e1, e2, e3) : τ ifz(ē1, ē2, ē3)
Rifz

In this case we know that ∆; Γ `S ifz(e1, e2, e3) : τ ifz(e′1, e
′
2, e
′
3). We want to show that

∆; Γ ` ifz(e′1, e
′
2, e
′
3) ∼= backint([overΓ/Γ]ifz(e′1, e

′
2, e
′
3)) : τ

By induction we get that

∆; Γ ` e1
∼= backint([overΓ/Γ]e′1) : int

∆; Γ ` e2
∼= backτ ([overΓ/Γ]e′2) : τ

∆; Γ ` e3
∼= backτ ([overΓ/Γ]e′3) : τ

Thus we get the following:

∆; Γ ` ifz(e1, e2, e3) ∼= ifz(backint([overΓ/Γ]e′1), backτ ([overΓ/Γ]e′2), backτ ([overΓ/Γ]e′3))
∼= ifz((λx : int.x) ([overΓ/Γ]e′1), backτ ([overΓ/Γ]e′2), backτ ([overΓ/Γ]e′3))
∼= ifz([overΓ/Γ]e′1, backτ ([overΓ/Γ]e′2), backτ ([overΓ/Γ]e′3))
∼= backτ (ifz([overΓ/Γ]e′1, [overΓ/Γ]e′2, [overΓ/Γ]e′3))
∼= backτ ([overΓ/Γ]ifz(e′1, e

′
2, e
′
3))

: τ

Case for Rpair
The rule for this case is

∆; Γ `S e1 : τ1 ē1 ∆; Γ `S e2 : τ2 ē2

∆; Γ `S 〈e1, e2〉 : τ1 × τ2 〈ē1, ē2〉
Rpair

In this case we know that ∆; Γ `S 〈e1, e2〉 : τ1 × τ2 〈e′1, e′2〉. We want to show that

∆; Γ ` 〈e1, e2〉 ∼= backτ1×τ2([overΓ/Γ]〈e′1, e′2〉) : τ1 × τ2

By induction we get that
∆; Γ ` e1

∼= backτ1([overΓ/Γ]e′1) : τ1

∆; Γ ` e2
∼= backτ2([overΓ/Γ]e′2) : τ2

84

So by the definition of backτ1×τ2 , we get the following:

∆; Γ ` 〈e1, e2〉 ∼= 〈backτ1([overΓ/Γ]e′1), backτ2([overΓ/Γ]e′2)〉
∼= backτ1×τ2〈[overΓ/Γ]e′1, [overΓ/Γ]e′2〉
∼= backτ1×τ2([overΓ/Γ]〈e′1, e′2〉)
: τ1 × τ2

Case for Rproj
The rule for this case is

∆; Γ `S e : τ1 × τ2 ē i ∈ {1, 2}
∆; Γ `S πie : τi πiē

Rproj

In this case we know that ∆; Γ `S πie : τi πie
′. We want to show that

∆; Γ ` πie ∼= backτi([overΓ/Γ]πie
′) : τi

By induction we get that

∆; Γ ` e ∼= backτ1×τ2([overΓ/Γ]e′) : τ1 × τ2

Thus we get the following:

∆; Γ ` πie ∼= πi(backτ1×τ2([overΓ/Γ]e′))
∼= backτi(πi([overΓ/Γ]e′))
∼= backτi([overΓ/Γ]πie

′)

: τi

Case for Rtlam
The rule for this case is

∆, α; Γ `S e : τ ē

∆; Γ `S Λα.e : ∀α.τ Λα.ē
Rtlam

In this case we know that ∆; Γ `S Λα.e : ∀α.τ Λα.ē. We want to show that

∆; Γ ` Λα.e ∼= back∀α.τ ([overΓ/Γ](Λα.ē)) : ∀α.τ

By induction we get that ∆, α; Γ ` e ∼= backτ ([overΓ/Γ]ē) : τ , and so by congruence we have that
∆; Γ ` Λα.e ∼= Λα.backτ ([overΓ/Γ]ē) : ∀α.τ . We know that

∆; Γ ` back∀α.τ ([overΓ/Γ](Λα.ē)) ∼= back∀α.τ (Λα.([overΓ/Γ]ē))
∼= (λx : ∀α.τ.Λα.(backτ (x[α]))) (Λα.([overΓ/Γ]ē))
∼= Λα.(backτ ((Λα.([overΓ/Γ]ē))[α]))
∼= Λα.(backτ ([overΓ/Γ]ē))
∼= Λα.e

: ∀α.τ

Case for Rtapp
The rule for this case is

∆; Γ `S e : ∀α.τ ē ∆ `S τ ′ type
∆; Γ `S e[τ ′] : [τ ′/α]τ ē[|τ ′|]

Rtapp

85

In this case we know that ∆; Γ `S e[τ ′] : [τ ′/α]τ ē[|τ ′|]. We want to show that

∆; Γ ` e[τ ′] ∼= back[τ ′/α]τ ([overΓ/Γ]ē[|τ ′|]) : [τ ′/α]τ

By induction we get that ∆; Γ ` e ∼= back∀α.τ ([overΓ/Γ]ē) : ∀α.τ , so by congruence we get that
∆; Γ ` e[τ ′] ∼= back∀α.τ ([overΓ/Γ]ē)[τ ′] : [τ ′/α]τ . We know that

∆; Γ ` e[τ ′] ∼= back∀α.τ ([overΓ/Γ]ē)[τ ′]
∼= (λx : ∀α.τ.Λα.(backτ (x[α])) [overΓ/Γ]ē)[τ ′]
∼= Λα.(backτ ([overΓ/Γ]ē[α])) [τ ′]
∼= ([τ ′/α]backτ) ([overΓ/Γ]ē[τ ′])

: [τ ′/α]τ

By Reflexivity, we know that ∆; Γ ` [overΓ/Γ]ē ∼ [overΓ/Γ]ē : |∀α.τ |. This means that for δ1 : ∆,
δ2 : ∆, η : δ1 ↔ δ2, and γ1 ∼Γ γ2[η : δ1 ↔ δ2], we know that

(γ̂1(δ̂1([overΓ/Γ]ē)), γ̂2(δ̂2([overΓ/Γ]ē))) ∈ [|∀α.τ |]Eη:δ1↔δ2

Thus we can use the definition of the logical relation and the extension to terms to get that, using
the relation R as described in Lemma 11.3,

(γ̂1(δ̂1([overΓ/Γ]ē))[δ̂1(τ ′)], γ̂2(δ̂2([overΓ/Γ]ē))[δ̂2(|τ ′|)]) ∈ [|τ |]Eη′:δ′1↔δ′2

Where δ′1 = δ1 ⊗ α ↪→ δ̂1(τ ′), δ′2 = δ2 ⊗ α ↪→ δ̂2(|τ ′|), and η′ = η ⊗ α ↪→ R . By Lemma 11.3 we
know that

(δ̂1([τ ′/α]backτ), δ̂2(back[τ ′/α]τ)) ∈ [|τ | → [τ ′/α]τ]Eη′:δ′1↔δ′2

This implies by definition and Lemma 8.3 that

(δ̂1([τ ′/α]backτ) (γ̂1(δ̂1([overΓ/Γ]ē))[δ̂1(τ ′)]),

δ̂2(back[τ ′/α]τ) (γ̂2(δ̂2([overΓ/Γ]ē))[δ̂2(|τ ′|)])) ∈ [[τ ′/α]τ]Eη′:δ′1↔δ′2

This no longer depends on α, so this is the same as

(γ̂1(δ̂1(([τ ′/α]backτ)([overΓ/Γ]ē[τ ′]))), γ̂2(δ̂2(back[τ ′/α]τ ([overΓ/Γ]ē[|τ ′|])))) ∈ [[τ ′/α]τ]Eη:δ1↔δ2

Then by the definition of logical equivalence, we have that

∆; Γ ` ([τ ′/α]backτ)([overΓ/Γ]ē[τ ′]) ∼ back[τ ′/α]τ ([overΓ/Γ]ē[|τ ′|]) : [τ ′/α]τ

So by the coincidence of logical and contextual equivalence, we get

∆; Γ ` ([τ ′/α]backτ)([overΓ/Γ]ē[τ ′]) ∼= back[τ ′/α]τ ([overΓ/Γ]ē[|τ ′|]) : [τ ′/α]τ

But combining this with our derivation above, this gets us the desired result.

Case for Rpack
The rule for this case is

∆ `S τ ′ type ∆, α `S τ type ∆; Γ `S e : [τ ′/α]τ ē

∆; Γ `S pack[τ ′, e] as∃α.τ : ∃α.τ pack[|τ ′|, ē] as ∃α.|τ |
Rpack

86

In this case we know that ∆; Γ `S pack[τ ′, e] as ∃α.τ : ∃α.τ pack[|τ ′|, ē] as ∃α.|τ |. We want to
show that

∆; Γ ` pack[τ ′, e] as ∃α.τ ∼= back∃α.τ ([overΓ/Γ](pack[|τ ′|, ē] as∃α.|τ |)) : ∃α.τ

By induction we get that ∆; Γ ` e ∼= back[τ ′/α]τ ([overΓ/Γ]ē) : [τ ′/α]τ , and so by congruence we
get that

∆; Γ ` pack[τ ′, e] as ∃α.τ ∼= pack[τ ′, back[τ ′/α]τ ([overΓ/Γ]ē)] as ∃α.τ : [τ ′/α]τ

Thus we have that

∆; Γ ` back∃α.τ ([overΓ/Γ](pack[|τ ′|, ē] as ∃α.|τ |))
∼= (λx : |∃α.τ |. unpack[α, y] = x in(pack[α, backτy] as ∃α.τ))

([overΓ/Γ](pack[|τ ′|, ē] as ∃α.|τ |))
∼= unpack[α, y] = (pack[|τ ′|, [overΓ/Γ]ē] as ∃α.|τ |) in(pack[α, backτy] as∃α.τ))
∼= pack[|τ ′|, ([|τ ′|/α]backτ) ([overΓ/Γ]ē)] as ∃α.τ
: ∃α.τ

Now we just need to show that

∆; Γ ` pack[|τ ′|, ([|τ ′|/α]backτ) ([overΓ/Γ]ē)] as ∃α.τ
∼= pack[τ ′, back[τ ′/α]τ ([overΓ/Γ]ē)] as ∃α.τ
:∃α.τ

The desired result will follow from this by our induction result above, as well as transitivity. By
the coincidence of contextual and logical equivalence, this is the same as showing that

∆; Γ ` pack[|τ ′|, ([|τ ′|/α]backτ) ([overΓ/Γ]ē)] as ∃α.τ
∼ pack[τ ′, back[τ ′/α]τ ([overΓ/Γ]ē)] as ∃α.τ
:∃α.τ

So we just have to show for δ1 : ∆, δ2 : ∆, η : δ1 ↔ δ2, and γ1 ∼Γ γ2[η : δ1 ↔ δ2] that

(δ̂1(γ̂1(pack[|τ ′|, ([|τ ′|/α]backτ) ([overΓ/Γ]ē)] as ∃α.τ)),

δ̂2(γ̂2(pack[τ ′, back[τ ′/α]τ ([overΓ/Γ]ē)] as ∃α.τ)))

∈ [∃α.τ]η:δ1↔δ2

By the definition of the type relation, to show this we can just show for some ST-closed relation
R ⊆ Val(δ̂1(|τ ′|))× Val(δ̂2(τ ′)) that

(δ̂1(γ̂1(([|τ ′|/α]backτ) ([overΓ/Γ]ē))), δ̂2(γ̂2(back[τ ′/α]τ ([overΓ/Γ]ē)))) ∈ [τ]η′:δ′1↔δ′2

Where δ′1 = δ1 ⊗ α ↪→ δ̂1(τ ′), δ′2 = δ2 ⊗ α ↪→ δ̂2(|τ ′|), and η′ = η ⊗ α ↪→ R . Now we pick R to be
the relation defined in Lemma 11.4, so by the lemma we know that

(δ̂1([|τ ′|/α]backτ), δ̂2(back[τ ′/α]τ)) ∈ [|[τ ′/α]τ | → τ]η′:δ′1↔δ′2

We also know by Reflexivity that

(δ̂1(γ̂1([overΓ/Γ]ē)), δ̂2(γ̂2([overΓ/Γ]ē))) ∈ [|[τ ′/α]τ |]η′:δ′1↔δ′2
The above two facts combine to get us the desired result, by definition of the type relation.

87

Case for Runpack
The rule for this case is

∆; Γ `S e1 : ∃α.τ1 ē1 ∆, α; Γ, x : τ1 `S e2 : τ2 ē2 ∆ `S τ2 type

∆; Γ `S unpack[α, x] = e1 in e2 : τ2 unpack[α, x] = ē1 in ē2
Runpack

In this case we know that ∆; Γ `S unpack[α, x] = e1 in e2 : τ unpack[α, x] = ē1 in ē2. We want
to show that

∆; Γ `S unpack[α, x] = e1 in e2
∼= backτ ([overΓ/Γ](unpack[α, x] = ē1 in ē2)) : τ

By induction we get that

∆; Γ ` e1
∼= back∃α.τ ′([overΓ/Γ]ē1) : ∃α.τ

∆, α; Γ, x : τ ′ ` e2
∼= backτ ([overΓ,x:τ ′/Γ, x]ē2) : τ

Thus we have that

∆; Γ ` unpack[α, x] = e1 in e2

∼= unpack[α, x] = back∃α.τ ′([overΓ/Γ]ē1) in backτ ([overΓ,x:τ ′/Γ, x]ē2)
∼= backτ ([overΓ/Γ](unpack[α, x] = back∃α.τ ′(ē1) in[overτ ′(x)/x]ē2))

: τ

Thus the result will follow by transitivity and congruence if we just show that

∆; |Γ| ` unpack[α, x] = back∃α.τ ′(ē1) in[overτ ′(x)/x]ē2
∼= unpack[α, x] = ē1 in ē2 : |τ |

If ē1 does not terminate, then clearly the above holds, as neither side will terminate, so they are
contextually equivalent. So suppose ē1 ↓, so we have that ē1 7→∗ pack[τ1, v1] as∃α.τ ′. Then we
have that

∆; |Γ| ` back∃α.τ ′(ē1)
∼= (λx : |∃α.τ ′|. unpack[α, y] = x in(pack[α, backτ ′(y)] as∃α.τ ′)) ē1

∼= unpack[α, y] = ē1 in(pack[α, backτ ′(y)] as ∃α.τ ′)
∼= unpack[α, y] = pack[τ1, v1] as ∃α.τ ′ in(pack[α, backτ ′(y)] as ∃α.τ ′)
∼= pack[τ1, backτ ′(v1)] as ∃α.τ ′

: |τ |

So then using this and Lemma 11.1 below we have that

∆; |Γ| ` unpack[α, x] = back∃α.τ ′(ē1) in[overτ ′(x)/x]ē2

∼= unpack[α, x] = pack[τ1, backτ ′(v1)] as ∃α.τ ′ in[overτ ′(x)/x]ē2

∼= [backτ ′(v1)/x][τ1/α][overτ ′(x)/x]ē2

∼= [τ1/α][overτ ′(backτ ′(v1))/x]ē2

∼= [τ1/α][v1/x]ē2

∼= unpack[α, x] = pack[τ1, v1] as ∃α.τ ′ in ē2

∼= unpack[α, x] = ē1 in ē2

: |τ |

Thus the desired result follows.

88

Case for Rfun
Given the following abbreviations:

E = 〈x1, 〈...〈xn−1, xn〉...〉〉
S = [π1y/x][π1π2y/x1]...[π1π2...π2y/xn−1][π2...π2y/xn]

F = pack[τenv, 〈f, π2y〉] as |τ → τ ′|
The rule for this case is

Γ = x1 : τ1, ..., xn : τn
∆; Γ, x : τ, f : τ → τ ′ `S e : τ ′ ē

∆ `S τ type
τenv = |τ1| × ...× |τn|

∆; Γ `S fun f(x : τ).e : τ → τ ′ pack[τenv,

〈(f̂un f(y : |τ | × τenv).[F/f]S(ē)), E〉] as |τ → τ ′|

Rfun

In this case we have that

∆; Γ `S fun f(x : τ).e : τ → τ ′ pack[τenv, 〈f̂un f(y : |τ | × τenv).[F/f]S(ē), E〉] as |τ → τ ′|

We want to show that

∆; Γ ` fun f(x : τ).e : τ → τ ′

∼= backτ→τ ′([overΓ/Γ] pack[τenv, 〈f̂un f(y : |τ | × τenv).[F/f]S(ē), E〉] as |τ → τ ′|)
: τ → τ ′

By induction we get that ∆; Γ, x : τ, f : τ → τ ′ ` e ∼= backτ ′([overΓ,x:τ,f :τ→τ ′/Γ, x, f]ē) : τ ′. We
will prove the above by making use of Admissibility, Theorem 7.8, so we just have to show that for
all i ≥ 0,

∆; Γ ` funi f(x : τ).e : τ → τ ′

∼= backτ→τ ′([overΓ/Γ] pack[τenv, 〈f̂un
i
f(y : |τ | × τenv).[F/f]S(ē), E〉] as |τ → τ ′|)

: τ → τ ′

We will do this by induction on i.

Base Case: i = 0

In this case we just need to show that

∆; Γ ` fun0 f(x : τ).e

∼= backτ→τ ′([overΓ/Γ] pack[τenv, 〈f̂un
0
f(y : |τ | × τenv).[F/f]S(ē), E〉] as |τ → τ ′|)

: τ → τ ′

However we know the following:

89

∆; Γ `backτ→τ ′([overΓ/Γ] pack[τenv, 〈(f̂un
0
f(y : |τ | × τenv).[F/f]S(ē)), E〉] as |τ → τ ′|)

∼=(λf : |τ → τ ′|.λz : τ. unpack[α, g] = f in backτ ′((π1g)̂〈overτz, π2g〉))

([overΓ/Γ] pack[τenv, 〈(f̂un
0
f(y : |τ | × τenv).[F/f]S(ē)), E〉] as |τ → τ ′|)

∼=λz : τ. unpack[α, g] = ([overΓ/Γ] pack[τenv, 〈(f̂un
0
f(y : |τ | × τenv).[F/f]S(ē)),

E〉] as |τ → τ ′|) in backτ ′((π1g)̂〈overτz, π2g〉)
∼=λz : τ. unpack[α, g] = (pack[τenv, 〈(f̂un

0
f(y : |τ | × τenv).[F/f]S(ē)),

[overΓ/Γ]E〉] as |τ → τ ′|) in backτ ′((π1g)̂〈overτz, π2g〉)
∼=λz : τ.backτ ′((π1〈(f̂un

0
f(y : |τ | × τenv).[F/f]S(ē)), [overΓ/Γ]E〉)̂

〈overτz, π2〈(f̂un
0
f(y : |τ | × τenv).[F/f]S(ē)), [overΓ/Γ]E〉〉)

∼=λz : τ.backτ ′((f̂un
0
f(y : |τ | × τenv).[F/f]S(ē))̂〈overτz, [overΓ/Γ]E〉)

∼=λz : τ.backτ ′((f̂un
0
f(y : |τ | × τenv).[pack[τenv, 〈f, π2y〉] as |τ → τ ′|/f]S(ē))̂

〈overτz, [overΓ/Γ]E〉)

Thus we can just show that

∆; Γ ` fun0 f(x : τ).e

∼ λz : τ.backτ ′((f̂un
0
f(y : |τ | × τenv).[pack[τenv, 〈f, π2y〉] as |τ → τ ′|/f]S(ē))̂

〈overτz, [overΓ/Γ]E〉)
: τ → τ ′

So we just have to show for δ1 : ∆, δ2 : ∆, η : δ1 ↔ δ2, and γ1 ∼Γ γ2[η : δ1 ↔ δ2] that

(fun0 f(x : τ).e, λz : τ.backτ ′((f̂un
0
f(y : |τ | × τenv).[pack[τenv, 〈f, π2y〉] as

|τ → τ ′|/f]S(ē))̂〈overτz, [overΓ/Γ]E〉))
∈ [τ → τ ′]η:δ1↔δ2

To do this we assume that (v1, v2) ∈ [τ]η:δ1↔δ2 and show that

((fun0 f(x : τ).e) v1, (λz : τ.backτ ′((f̂un
0
f(y : |τ | × τenv).[pack[τenv, 〈f, π2y〉] as

|τ → τ ′|/f]S(ē))̂〈overτz, [overΓ/Γ]E〉)) v2)

∈ [τ ′]Eη:δ1↔δ2

However by the properties of fun0 , we know that neither of these terminate, so the above holds.

Inductive Case: i > 0

In this case we just need to show that

∆; Γ ` funi f(x : τ).e

∼= backτ→τ ′([overΓ/Γ] pack[τenv, 〈f̂un
i
f(y : |τ | × τenv).[F/f]S(ē), E〉] as |τ → τ ′|)

: τ → τ ′

90

Thus we have that

∆; Γ `backτ→τ ′([overΓ/Γ] pack[τenv, 〈(f̂un
i
f(y : |τ | × τenv).[F/f]S(ē)), E〉] as |τ → τ ′|)

∼=(λf : |τ → τ ′|.λz : τ. unpack[α, g] = f in backτ ′((π1g)̂〈overτz, π2g〉))

([overΓ/Γ] pack[τenv, 〈(f̂un
i
f(y : |τ | × τenv).[F/f]S(ē)), E〉] as |τ → τ ′|)

∼=λz : τ. unpack[α, g] = ([overΓ/Γ] pack[τenv, 〈(f̂un
i
f(y : |τ | × τenv).[F/f]S(ē)),

E〉] as |τ → τ ′|) in backτ ′((π1g)̂〈overτz, π2g〉)
∼=λz : τ. unpack[α, g] = (pack[τenv, 〈(f̂un

i
f(y : |τ | × τenv).[F/f]S(ē)),

[overΓ/Γ]E〉] as |τ → τ ′|) in backτ ′((π1g)̂〈overτz, π2g〉)
∼=λz : τ.backτ ′((π1〈(f̂un

i
f(y : |τ | × τenv).[F/f]S(ē)), [overΓ/Γ]E〉)̂

〈overτz, π2〈(f̂un
i
f(y : |τ | × τenv).[F/f]S(ē)), [overΓ/Γ]E〉〉)

∼=λz : τ.backτ ′((f̂un
i
f(y : |τ | × τenv).[F/f]S(ē))̂〈overτz, [overΓ/Γ]E〉)

∼=λz : τ.backτ ′((f̂un
i
f(y : |τ | × τenv).[pack[τenv, 〈f, π2y〉] as |τ → τ ′|/f]S(ē))̂

〈overτz, [overΓ/Γ]E〉)
∼=λz : τ.backτ ′([f̂un

i−1
f(y : |τ | × τenv).[F/f]S(ē)/f]

[pack[τenv, 〈f, π2〈overτz, [overΓ/Γ]E〉〉] as |τ → τ ′|/f][〈overτz, [overΓ/Γ]E〉/y]S(ē)

∼=λz : τ.backτ ′([f̂un
i−1

f(y : |τ | × τenv).[F/f]S(ē)/f]

[pack[τenv, 〈f, [overΓ/Γ]E〉] as |τ → τ ′|/f][〈overτz, [overΓ/Γ]E〉/y]S(ē)

∼=λz : τ.backτ ′([f̂un
i−1

f(y : |τ | × τenv).[F/f]S(ē)/f]

[pack[τenv, 〈f, [overΓ/Γ]E〉] as |τ → τ ′|/f][overΓ,z:τ/Γ, z]ē)

∼=λz : τ.backτ ′([pack[τenv, 〈f̂un
i−1

f(y : |τ | × τenv).[F/f]S(ē),

[overΓ/Γ]E〉] as |τ → τ ′|/f][overΓ,z:τ/Γ, z]ē)

By our inner induction, we get that

∆; Γ ` funi−1 f(x : τ).e

∼= backτ→τ ′([overΓ/Γ] pack[τenv, 〈f̂un
i−1

f(y : |τ | × τenv).[F/f]S(ē), E〉] as |τ → τ ′|)
: τ → τ ′

However by Lemma 11.1, this is equivalent to

∆; Γ ` overτ→τ ′(funi−1 f(x : τ).e)

∼= [overΓ/Γ] pack[τenv, 〈f̂un
i−1

f(y : |τ | × τenv).[F/f]S(ē), E〉] as |τ → τ ′|
∼= pack[τenv, 〈f̂un

i−1
f(y : |τ | × τenv).[F/f]S(ē), [overΓ/Γ]E〉] as |τ → τ ′|

: τ → τ ′

91

We can then apply this to the above to get that

∆; Γ `λz : τ.backτ ′([pack[τenv, 〈f̂un
i−1

f(y : |τ | × τenv).[F/f]S(ē),

[overΓ/Γ]E〉] as |τ → τ ′|/f][overΓ,z:τ/Γ, z]ē)

∼=λz : τ.backτ ′([overτ→τ ′(fun
i−1 f(y : τ).e)/f][overΓ,z:τ/Γ, z]ē)

∼=λz : τ.backτ ′([fun
i−1 f(y : τ).e/f][overτ→τ ′f/f][overΓ,z:τ/Γ, z]ē)

∼=λz : τ.[funi−1 f(y : τ).e/f]backτ ′([overΓ,z:τ,f :τ→τ ′/Γ, z, f]ē)

∼=λz : τ.[funi−1 f(y : τ).e/f]e

∼=funi f(x : τ).e

: τ → τ ′

The second to last equivalence is due to our outer induction hypothesis. Therefore by transitivity
this case holds.

Thus we have shown for all i that

∆; Γ ` funi f(x : τ).e

∼= backτ→τ ′([overΓ/Γ] pack[τenv, 〈f̂un
i
f(y : |τ | × τenv).[F/f]S(ē), E〉] as |τ → τ ′|)

: τ → τ ′

So by Admissibility we get the desired result for this case, that

∆; Γ ` fun f(x : τ).e

∼= backτ→τ ′([overΓ/Γ] pack[τenv, 〈f̂un f(y : |τ | × τenv).[F/f]S(ē), E〉] as |τ → τ ′|)
: τ → τ ′

Case for Rapp
The rule for this case is

∆; Γ `S e1 : τ → τ ′ ē1 ∆; Γ `S e2 : τ ē2

∆; Γ `S e1 e2 : τ ′ unpack[α, x] = ē1 in(π1x)̂〈ē2, π2x〉
Rapp

In this case we have that ∆; Γ `S e1 e2 : τ ′ unpack[α, x] = ē1 in(π1x)̂〈ē2, π2x〉. We want to
show that

∆; Γ ` e1 e2
∼= backτ ′([overΓ/Γ](unpack[α, x] = ē1 in(π1x)̂〈ē2, π2x〉)) : τ ′

By induction we get that

∆; Γ ` e1
∼= backτ→τ ′([overΓ/Γ]ē1) : τ → τ ′

∆; Γ ` e2
∼= backτ ([overΓ/Γ]ē2) : τ

92

Thus we have the following:

∆; Γ ` e1 e2
∼=(backτ→τ ′([overΓ/Γ]ē1)) (backτ ([overΓ/Γ]ē2))
∼=((λf : |τ → τ ′|.λy : τ. unpack[α, g] = f in

backτ ′((π1g)̂〈overτy, π2g〉)) ([overΓ/Γ]ē1))

(backτ ([overΓ/Γ]ē2))
∼=(λy : τ. unpack[α, g] = ([overΓ/Γ]ē1) in

backτ ′((π1g)̂〈overτy, π2g〉))
(backτ ([overΓ/Γ]ē2))
∼= unpack[α, g] = ([overΓ/Γ]ē1) in

backτ ′((π1g)̂〈overτ (backτ ([overΓ/Γ]ē2)), π2g〉)
∼= unpack[α, g] = ([overΓ/Γ]ē1) in backτ ′((π1g)̂〈[overΓ/Γ]ē2, π2g〉)
∼=backτ ′([overΓ/Γ](unpack[α, g] = ē1 in(π1g)̂〈ē2, π2g〉))

: τ ′

Corollary 11.6. If ∆; Γ `S e : τ ē, then ∆; |Γ| ` ē ∼= overτ ([backΓ/Γ]e) : |τ |. where
[backΓ/Γ] = [backτ1(x1)/x1]...[backτn(xn)/xn] for Γ = x1 : τ1, ..., xn : τn.

Proof. By Theorem 11.5, we know that

∆; Γ ` e ∼= backτ ([overΓ/Γ]ē) : τ

Then by congruence we get that

∆; Γ ` overτ ([backΓ/Γ]e) ∼= overτ ([backΓ/Γ]backτ ([overΓ/Γ]ē)) : τ

However this is equivalent to

∆; Γ ` overτ ([backΓ/Γ]e) ∼= overτ (backτ ([backΓ o overΓ/Γ]ē)) : τ

Then by Lemma 11.1 and Lemma 11.2, we get that

∆; Γ ` overτ ([backΓ/Γ]e) ∼= ē : τ

93

12 Erasure

We define an erasure type translation τ◦ and term translation ∆; Γ `C e : τ ◦ ē that translates
terms in the combined language into terms in the source language by simply “erasing” closed
functions and converting them to normal functions.

The type translation is defined as follows:

α◦ = α

unit◦ = unit

int◦ = int

(τ1 × τ2)◦ = τ◦1 × τ◦2
(τ1 → τ2)◦ = τ◦1 → τ◦2

(τ1 ⇒ τ2)◦ = τ◦1 → τ◦2

(∀α.τ)◦ = ∀α.(τ◦)
(∃α.τ)◦ = ∃α.(τ◦)

We also define Γ◦ by ·◦ = · and (Γ, x : τ)◦ = Γ◦, x : τ◦

The term translation is defined as follows:

()◦ = ()

x◦ = x

n◦ = n

(e1 p e2)◦ = e◦1 p e
◦
2

ifz(e1, e2, e3)◦ = ifz(e◦1, e
◦
2, e
◦
3)

〈e1, e2〉◦ = 〈e◦1, e◦2〉
(πie)

◦ = πi(e
◦)

(Λα.e)◦ = Λα.e◦

(e[τ])◦ = e◦[τ◦]

(pack[τ ′, e] as ∃α.τ)◦ = pack[τ ′◦, e◦] as ∃α.τ◦

(unpack[α, x] = e1 in e2)◦ = unpack[α, x] = e◦1 in e
◦
2

(fun f(x : τ).e)◦ = fun f(x : τ◦).e◦

(e1 e2)◦ = e◦1 e
◦
2

(f̂un f(x : τ).e)◦ = fun f(x : τ◦).e◦

(e1̂e2)◦ = e◦1 e
◦
2

12.1 Static Erasure

Lemma 12.1. If ∆; Γ `C e : τ , then ∆; Γ◦ `S e◦ : τ◦.

Proof. By induction on the structure of e.

94

Case for Tunit
If ∆; Γ `C () : unit, then we know that ()◦ = (). But we also know that ∆; Γ◦ `S () : unit◦ =
unit by rule Tunit, as desired.

Case for Tvar
If ∆; Γ `C x : τ , then we know that x◦ = x. But we also know that ∆; Γ◦ `S x : τ◦ by rule Tvar,
since by definition, Γ◦ will contain x : τ◦, since Γ contains x : τ .

Case for Tint
If ∆; Γ `C n : int, then we know that n◦ = n. But we also know that ∆; Γ◦ `S n : int◦ = int by
rule Tint, as desired.

Case for Tintop
If ∆; Γ `C e1 p e2 : int, then we know by assumption that ∆; Γ `C e1 : int and ∆; Γ `C e2 : int.
Then by induction we have that ∆; Γ◦ `S e◦1 : int and ∆; Γ◦ `S e◦2 : int. Thus by rule Tintop and
the fact that (e1 p e2)◦ = (e◦1 p e

◦
2), we get that ∆; Γ `S (e1 p e2)◦ : int, as desired.

Case for Tifz
If ∆; Γ `C ifz(e1, e2, e3) : τ , then we know by assumption that ∆; Γ `C e1 : int, ∆; Γ `C e2 : τ ,
and ∆; Γ `C e3 : τ . Then by induction we have that ∆; Γ◦ `S e◦1 : int, ∆; Γ◦ `S e◦2 : τ◦, and
∆; Γ◦ `S e◦3 : τ◦. Thus by rule Tifz and the fact that ifz(e1, e2, e3)◦ = ifz(e◦1, e

◦
2, e
◦
3), we get that

∆; Γ `S ifz(e1, e2, e3)◦ : τ◦, as desired.

Case for Tpair
If ∆; Γ `C 〈e1, e2〉 : τ1 × τ2, then we know by assumption that ∆; Γ `C e1 : τ1 and ∆; Γ `C e2 : τ2.
Then by induction we have that ∆; Γ◦ `S e◦1 : τ◦1 and ∆; Γ◦ `S e◦2 : τ◦2 . Thus by rule Tpair and the
fact that 〈e1, e2〉◦ = 〈e◦1, e◦2〉, we get that ∆; Γ `S 〈e1, e2〉◦ : (τ1 × τ2)◦, as desired.

Case for Tproj
If ∆; Γ `C πie : τi, then we know by assumption that ∆; Γ `C e : τ1 × τ2. Then by induction we
have that ∆; Γ◦ `S e◦ : (τ1 × τ2)◦. Thus by rule Tproj and the fact that (πie)

◦ = πi(e
◦), we get

that ∆; Γ `S (πie)
◦ : τ◦i , as desired.

Case for Ttlam
If ∆; Γ `C Λα.e : ∀α.τ , then we know by assumption that ∆, α; Γ `C e : τ . Then by induction we
have that ∆, α; Γ◦ `S e◦ : τ◦. Thus by rule Ttlam and the fact that (Λα.e)◦ = Λα.(e◦), we get that
∆; Γ `S (Λα.e)◦ : (∀α.τ)◦, as desired.

Case for Ttapp
If ∆; Γ `C e[τ ′] : [τ ′/α]τ , then we know by assumption that ∆; Γ `C e : ∀α.τ . Then by induction
we have that ∆; Γ◦ `S e◦ : (∀α.τ)◦. Thus by rule Ttapp and the fact that (e[τ ′])◦ = (e◦)[τ ′◦], we
get that ∆; Γ `S (e[τ ′])◦ : ([τ ′/α]τ)◦, as desired.

Case for Tpack
If ∆; Γ `C pack[τ ′, e] as ∃α.τ : ∃α.τ , then we know by assumption that ∆; Γ `C e : [τ ′/α]τ .
Then by induction we have that ∆; Γ◦ `S e◦ : ([τ ′/α]τ)◦. Thus by rule Tpack and the fact that
(pack[τ ′, e] as∃α.τ)◦ = pack[τ ′◦, e◦] as ∃α.τ◦, we get that ∆; Γ `S (pack[τ ′, e] as ∃α.τ)◦ : (∃α.τ)◦,
as desired.

95

Case for Tunpack
If ∆; Γ `C unpack[α, x] = e1 in e2 : τ , then we know by assumption that ∆; Γ `C e1 : ∃α.τ ′ and
∆, α; Γ, x : τ ′ `C e2 : τ . Then by induction we have that ∆; Γ◦ `C e◦1 : ∃α.τ ′◦ and ∆, α; Γ◦, x : τ ′◦ `C
e◦2 : τ◦. Thus by rule Tunpack and and the fact that (unpack[α, x] = e1 in e2)◦ = unpack[α, x] =
e◦1 in e

◦
2, we get that ∆; Γ `S (unpack[α, x] = e1 in e2)◦ : τ◦, as desired.

Case for Tfun
If ∆; Γ `C fun f(x : τ).e : τ → τ ′, then we know by assumption that ∆; Γ, x : τ `C e : τ ′.
Then by induction we have that ∆; Γ◦, x : τ◦ `S e◦ : τ ′◦. Thus by rule Tfun and the fact that
(fun f(x : τ).e)◦ = fun f(x : τ◦).e◦, we get that ∆; Γ `S (fun f(x : τ).e)◦ : (τ → τ ′)◦, as desired.

Case for Tapp
If ∆; Γ `C e1 e2 : τ ′, then we know by assumption that ∆; Γ `C e1 : τ → τ ′ and ∆; Γ `C e2 : τ .
Then by induction we have that ∆; Γ◦ `S e◦1 : (τ → τ ′)◦ and ∆; Γ◦ `S e◦2 : τ◦. Thus by rule Tapp
and the fact that (e1 e2)◦ = e◦1 e

◦
2, we get that ∆; Γ `S (e1 e2)◦ : τ ′◦, as desired.

Case for Tccfun
If ∆; Γ `C f̂un f(x : τ).e : τ ⇒ τ ′, then we know by assumption that ∆; Γ, x : τ `C e : τ ′.
Then by induction we have that ∆; Γ◦, x : τ◦ `S e◦ : τ ′◦. Thus by rule Tfun and the fact that
(f̂un f(x : τ).e)◦ = fun f(x : τ◦).e◦, we get that ∆; Γ `S (f̂un f(x : τ).e)◦ : (τ → τ ′)◦, as desired.

Case for Tccapp
If ∆; Γ `C e1̂e2 : τ ′, then we know by assumption that ∆; Γ `C e1 : τ ⇒ τ ′ and ∆; Γ `C e2 : τ .
Then by induction we have that ∆; Γ◦ `S e◦1 : (τ ⇒ τ ′)◦ and ∆; Γ◦ `S e◦2 : τ◦. Thus by rule Tapp
and the fact that (e1̂e2)◦ = e◦1 e

◦
2, we get that ∆; Γ `S (e1̂e2)◦ : τ ′◦, as desired.

Lemma 12.2. If e val, then e◦ val.

Proof. By induction on the structure of the step e 7→ e′.

Case for Vunit
Trivial, since ()◦ = ().

Case for Vint
Trivial, since n◦ = n.

Case for Vpair
Suppose 〈e1, e2〉 val, we want to show that 〈e1, e2〉◦ val. By induction we get that e◦1 val and
e◦2 val, which implies by rule V pair that 〈e◦1, e◦2〉 val, or equivalently that 〈e1, e2〉◦ val.

Case for Vfun
Suppose fun f(x : τ).e val, we want to show that (fun f(x : τ).e)◦ val. Since (fun f(x : τ).e)◦ =
fun f(x : τ◦).e◦ and fun f(x : τ◦).e◦ val by rule V fun, we have that (fun f(x : τ).e)◦ val.

Case for Vccfun
Suppose f̂un f(x : τ).e val, we want to show that (f̂un f(x : τ).e)◦ val. Since (f̂un f(x : τ).e)◦ =
fun f(x : τ◦).e◦ and fun f(x : τ◦).e◦ val by rule V fun, we have that (f̂un f(x : τ).e)◦ val.

96

Case for Vtlam
Suppose Λα.e val, we want to show that (Λα.e)◦ val. Since (Λα.e)◦ = Λα.e◦, by rule V tlam we
know that Λα.e◦ val, or equivalently that (Λα.e)◦ val.

Case for Vpack
Suppose pack[τ ′, e] as ∃α.τ val, we want to show that (pack[τ ′, e] as ∃α.τ)◦ val. By induction we
get that e◦ val. Then by rule V pack we get that pack[τ ′◦, e◦] as∃α.τ◦ val, or equivalently that
(pack[τ ′, e] as∃α.τ)◦ val.

12.2 Dynamic Erasure

Lemma 12.3. If e 7→ e′, then e◦ 7→ e′◦.

Proof. By induction on the structure of the step e 7→ e′.

Case for Eintop1

Suppose that
e1 7→ e′1

e1 p e2 7→ e′1 p e2
Eintop1

Then by induction we get that e◦1 7→ e′◦1 , so by rule Eintop1 we know that e◦1 p e
◦
2 7→ e′◦1 p e◦2, which

by definition is equivalent to (e1 p e2)◦ 7→ (e′1 p e2)◦.

Case for Eintop2

Suppose that
e2 7→ e′2

e1 p e2 7→ e1 p e
′
2

Eintop2

Then by induction we get that e◦2 7→ e′◦2 , so by rule Eintop2 we know that e◦1 p e
◦
2 7→ e◦1 p e

′◦
2 , which

by definition is equivalent to (e1 p e2)◦ 7→ (e1 p e
′
2)◦.

Case for Eintop3

Suppose that
n1 pn2 = n
n1 pn2 7→ n Eintop3

Since n◦1 = n1 and n◦2 = n2 by definition, it follows that (n1 pn2)◦ = n = n◦, so by rule Eintop3

we have that (n1 pn2)◦ 7→ n◦.

Case for Eifz1

Suppose that
e1 7→ e′1

ifz(e1, e2, e3) 7→ ifz(e′1, e2, e3)
Eifz1

Then by induction we get that e◦1 7→ e′◦1 , so by rule Eifz1 we know that ifz(e◦1, e
◦
2, e
◦
3) 7→

ifz(e′◦1 , e
◦
2, e
◦
3), which by definition is equivalent to ifz(e1, e2, e3)◦ 7→ ifz(e′1, e2, e3)◦,

97

Case for Eifz2

Suppose that
n = 0

ifz(n, e2, e3) 7→ e2
Eifz2

Since n◦ = n = 0, we know by rule Eifz2 that ifz(n◦, e◦2, e
◦
3) 7→ e◦2 or equivalently ifz(n, e2, e3)◦ 7→

e◦2.

Case for Eifz3

Suppose that
n 6= 0

ifz(n, e2, e3) 7→ e3
Eifz3

Since n◦ = n 6= 0, we know by rule Eifz3 that ifz(n◦, e◦2, e
◦
3) 7→ e◦3 or equivalently ifz(n, e2, e3)◦ 7→

e◦3.

Case for Eapp1

Suppose that
e1 7→ e′1

e1 e2 7→ e′1 e2
Eapp1

Then by induction we get that e◦1 7→ e′◦1 , so by rule Eapp1 we know that e◦1 e
◦
2 7→ e′◦1 e◦2, or

equivalently that (e1 e2)◦ 7→ (e′1 e2)◦.

Case for Eapp2

Suppose that
e2 7→ e′2

(fun f(x : τ).e) e2 7→ (fun f(x : τ).e) e′2
Eapp2

Then by induction we get that e◦2 7→ e′◦2 , so by rule Eapp2 we know that (fun f(x : τ).e)◦ e◦2 7→
(fun f(x : τ).e)◦ e′◦2 , or equivalently that ((fun f(x : τ).e) e2)◦ 7→ ((fun f(x : τ).e) e′2)◦.

Case for Eapp3

Suppose that
e2 val

(fun f(x : τ).e) e2 7→ [fun f(x : τ).e/f][e2/x]e
Eapp3

We know that (fun f(x : τ).e)◦ = (fun f(x : τ◦).e◦), as well as that e◦2 val by Lemma 12.2. Then
by rule Eapp3 we get that (fun f(x : τ◦).e◦) e◦2 7→ [fun f(x : τ◦).e◦/f][e◦2/x]e◦ which is equivalent
to ((fun f(x : τ).e) e2)◦ 7→ ([fun f(x : τ).e/f][e2/x]e)◦.

Case for Eccapp1

Suppose that
e1 7→ e′1

e1̂e2 7→ e′1̂e2
Eccapp1

Then by induction we get that e◦1 7→ e′◦1 , so by rule Eapp1 we know that e◦1 e
◦
2 7→ e′◦1 e◦2. Since

(e1̂e2)◦ = e◦1 e
◦
2 and (e′1̂e2)◦ = e′◦1 e◦2, this is equivalent to (e1̂e2)◦ 7→ (e′1̂e2)◦.

Case for Eccapp2

Suppose that
e2 7→ e′2

(f̂un f(x : τ).e)̂e2 7→ (f̂un f(x : τ).e)̂e′2 Eccapp2

98

Then by induction we get that e◦2 7→ e′◦2 , so by rule Eapp2 we know that (f̂un f(x : τ).e)◦ e◦2 7→
(f̂un f(x : τ).e)◦ e′◦2 . Since ((f̂un f(x : τ).e)̂e2)◦ = (f̂un f(x : τ).e)◦ e◦2 and
((f̂un f(x : τ).e)̂e′2)◦ = (f̂un f(x : τ).e)◦ e′◦2 , this is equivalent to ((f̂un f(x : τ).e)̂e2)◦ 7→
((f̂un f(x : τ).e)̂e′2)◦.

Case for Eccapp3

Suppose that
e2 val

(f̂un f(x : τ).e)̂e2 7→ [f̂un f(x : τ).e/f][e2/x]e
Eccapp3

We know that (f̂un f(x : τ).e)◦ = (fun f(x : τ◦).e◦), as well as that e◦2 val by Lemma 12.2. Then
by rule Eapp3 we get that (fun f(x : τ◦).e◦) e◦2 7→ [fun f(x : τ◦).e◦/f][e◦2/x]e◦ which is equivalent
to ((f̂un f(x : τ).e) e2)◦ 7→ ([f̂un f(x : τ).e/f][e2/x]e)◦.

Case for Epair1

Suppose that
e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
Epair1

Then by induction we get that e◦1 7→ e′◦1 , so by rule Epair1 we know that 〈e◦1, e◦2〉 7→ 〈e′◦1 , e◦2〉, or
equivalently that 〈e1, e2〉◦ 7→ 〈e′1, e2〉◦

Case for Epair2

Suppose that
e1 val e2 7→ e′2
〈e1, e2〉 7→ 〈e1, e

′
2〉
Epair2

Then by induction we get that e◦2 7→ e′◦2 , so by rule Epair1 we know that 〈e◦1, e◦2〉 7→ 〈e◦1, e′◦2 〉, or
equivalently that 〈e1, e2〉◦ 7→ 〈e1, e

′
2〉◦

Case for Eproj1
Suppose that

e 7→ e′

πie 7→ πie
′ Eproj1

Then by induction we get that e◦ 7→ e′◦, so by rule Eproj1 we know that πi(e
◦) 7→ πi(e

′◦), or
equivalently that (πie)

◦ 7→ (πie
′)◦.

Case for Eproj2
Suppose that

i ∈ {1, 2} e1 val e2 val

πi〈e1, e2〉 7→ ei
Eproj2

By Lemma 12.2 we have that e◦1 val and e◦2 val. Thus by rule Eproj2 we have that πi〈e◦1, e◦2〉 7→ e◦i ,
or equivalently πi〈e1, e2〉◦ 7→ e◦i .

Case for Etapp1

Suppose that
e 7→ e′

e[τ] 7→ e′[τ]
Etapp1

Then by induction we get that e◦ 7→ e′◦, so by rule Etapp1 we know that e◦[τ◦] 7→ e′◦[τ◦], or
equivalently that (e[τ])◦ 7→ (e′[τ])◦.

99

Case for Etapp2

Suppose that

(Λα.e)[τ] 7→ [τ/α]e
Etapp2

We know by definition that (Λα.e)◦ = Λα.e◦, and we have by rule Etapp2 that (Λα.e◦)[τ◦] 7→
[τ◦/α]e◦, so equivalently ((Λα.e)[τ])◦ 7→ ([τ/α]e)◦.

Case for Epack
Suppose that

e 7→ e′

pack[τ ′, e] as∃α.τ 7→ pack[τ ′, e′] as ∃α.τ
Epack

Then by induction we get that e◦ 7→ e′◦, so by rule Epack we know that pack[τ ′◦, e◦] as ∃α.τ◦ 7→
pack[τ ′◦, e′◦] as∃α.τ◦, which is equivalent to (pack[τ ′, e] as ∃α.τ)◦ 7→ (pack[τ ′, e′] as ∃α.τ)◦.

Case for Eunpack1

Suppose that
e1 7→ e′1

unpack[α, x] = e1 in e2 7→ unpack[α, x] = e′1 in e2
Eunpack1

Then by induction we get that e◦1 7→ e′◦1 , so by rule Eunpack1 we know unpack[α, x] = e◦1 in e
◦
2 7→

unpack[α, x] = e′◦1 in e◦2, or equivalently that

(unpack[α, x] = e1 in e2)◦ 7→ (unpack[α, x] = e′1 in e2)◦

Case for Eunpack2

Suppose that

e val
unpack[α, x] = (pack[τ ′, e] as∃α.τ) in e2 7→ [τ ′/α][e/x]e2

Eunpack2

By Lemma 12.2 we get that e◦ val. By rule Eunpack2 we have that

unpack[α, x] = pack[τ ′◦, e◦] as∃α.τ◦ in e◦2 7→ [τ ′◦/α][e◦/x]e◦2

Since (pack[τ ′, e] as∃α.τ)◦ = pack[τ ′◦, e◦] as ∃α.τ◦, this is equivalent to

unpack[α, x] = (pack[τ ′, e] as ∃α.τ)◦ in e◦2 7→ [τ ′◦/α][e◦/x]e◦2

Which is also equivalent to (unpack[α, x] = (pack[τ ′, e] as ∃α.τ) in e2)◦ 7→ ([τ ′/α][e/x]e2)◦.

Corollary 12.4. If · `C e : τ and e◦ ↓, then e ↓.

Proof. Suppose · `C e : τ and e◦ ↓. Suppose e does not halt. But by Lemma 12.3 this would mean
that e◦ does not halt, as every time e can take a step, so can e◦. But this is a contradiction, so
e ↓.

100

13 Equivalence Preservation

Theorem 13.1. If ∆; Γ `S e ∼= e′ : τ , then ∆; Γ `C e ∼= e′ : τ .

Proof. Suppose that ∆; Γ `S e ∼= e′ : τ . Let C : (∆; Γ . τ) (· . int) be some context in the
combined language. We want to show that C{e} ' C{e′}. Suppose C{e} ↓, which means that
there is some v val such that C{e} 7→∗ v. By Lemma 12.3, we get that (C{e})◦ 7→∗ v◦, and by
Lemma 12.2 we know that since v val it must be that v◦ val. Thus (C{e})◦ ↓ as well.

Note that since ∆; Γ `S e ∼= e′ : τ is in the source language, we know that Γ◦ = Γ, τ◦ = τ ,
e◦ = e, and e′◦ = e′. This implies that C◦ : (∆; Γ◦ . τ◦) (· . int) can equivalently be typed as
C◦ : (∆; Γ . τ) (· . int). This is a context in the source language, and since ∆; Γ `S e ∼= e′ : τ by
assumption, we know that by definition C◦{e} ' C◦{e′}. Since we know that (C{e})◦ = C◦{e◦} =
C◦{e} ↓, this implies that C◦{e′} ↓. By the above this is equivalent to saying that (C{e′})◦ ↓. Then
by Corollary 12.4, we have that C{e′} ↓.
Therefore, C{e} ↓ ⇒C{e′} ↓. Showing the reverse can be proved in a symmetric way. This gives
us that C{e} ' C{e′}, so therefore ∆; Γ `C e ∼= e′ : τ , as desired.

Lemma 13.2. If ∆; Γ `C e ∼= e′ : τ , ∆; Γ `T e : τ , and ∆; Γ `T e′ : τ , then ∆; Γ `T e ∼= e′ : τ .

Proof. Suppose that ∆; Γ `S e ∼= e′ : τ , ∆; Γ `T e : τ , and ∆; Γ `T e′ : τ . Let C : (∆; Γ . τ)
(· . int) be some context in the target language. We want to show that C{e} ' C{e′}. However
this follows immediately from our assumption that ∆; Γ `S e ∼= e′ : τ , as a context in the target
language is also in the combined language.

Theorem 13.3. If ∆; Γ `S e1
∼= e2 : τ , ∆; Γ `S e1 : τ ē1, and ∆; Γ `S e2 : τ ē2, then

∆; |Γ| `T ē1
∼= ē2 : |τ |.

Proof. Suppose that ∆; Γ `S e1
∼= e2 : τ , ∆; Γ `S e1 : τ ē1, and ∆; Γ `S e2 : τ ē2. By

Theorem 13.1, we know that ∆; Γ `C e1
∼= e2 : τ . By Theorem 11.5 we get that

∆; Γ `C e1
∼= backτ ([overΓ/Γ]ē1) : τ

∆; Γ `C e2
∼= backτ ([overΓ/Γ]ē2) : τ

Thus by transitivity we have that

∆; Γ `C backτ ([overΓ/Γ]ē1) ∼= backτ ([overΓ/Γ]ē2) : τ

By the congruence of contextual equivalence, we get that

∆; Γ `C overτ (backτ ([overΓ/Γ]ē1)) ∼= overτ (backτ ([overΓ/Γ]ē2)) : |τ |

Then by Lemma 11.1 we have that

∆; Γ `C [overΓ/Γ]ē1
∼= [overΓ/Γ]ē2 : |τ |

Again by the congurence of contextual equivalence we have that

∆; |Γ| `C [backΓ/Γ][overΓ/Γ]ē1
∼= [backΓ/Γ][overΓ/Γ]ē2 : |τ |

Then again by Lemma 11.1, we get that ∆; |Γ| `C ē1
∼= ē2 : |τ |, and since both ē1 and ē2 are in the

target language, we have by Lemma 13.2 that ∆; |Γ| `T ē1
∼= ē2 : |τ |.

101

