
Compiler Correctness via Contextual Equivalence
Matthew McKay, advised by Karl Crary

Combined Language Context Visualization

Source
Code

Compiled
Code

Context
in Source

Context
in Target

Context
in

Combined

Fit Into

Compilation

(ba
ck
τ
)

Over and Back Functions

We define two functions in the combined language, overτ : τ → |τ | and
backτ : |τ | → τ , each of which take terms in either the source or the target language
and changes them at the top level to have the correct converted type in the opposite
language. The two functions are mutually recursive and are inverses of one another.

overα = λx : α.x
overunit = λx : unit.x
overint = λx : int.x

overτ1×τ2 = λx : τ1 × τ2.〈overτ1π1x , overτ2π2x〉
overτ1→τ2 = λf : τ1→ τ2. pack[τ1→ τ2, 〈λy : |τ1| × (τ1→ τ2).

overτ2((π2y) (backτ1π1y)), f 〉] as |τ1→ τ2|
over∀α.τ = λx : (∀α.τ).Λα.(overτ (x [α]))

over∃α.τ = λx : (∃α.τ). unpack[α, y] = x in(pack[α, overτ (y)] as |∃α.τ |)
backα = λx : α.x

backunit = λx : unit.x
backint = λx : int.x

backτ1×τ2 = λx : |τ1 × τ2|.〈backτ1π1x , backτ2π2x〉
backτ1→τ2 = λf : |τ1→ τ2|.λy : τ1. unpack[α, g] = f in

backτ2((π1g) ∧ 〈overτ1y , π2g〉)
back∀α.τ = λx : |∀α.τ |.Λα.(backτ (x [α]))

back∃α.τ = λx : |∃α.τ |. unpack[α, y] = x in(pack[α, backτ (y)] as∃α.τ)

Erasure

The erasure translation e◦ simply removes closed recursive functions by converting
them to normal recursive functions. So (τ1→ τ2)◦ = τ◦1 → τ◦2 and

(fun f (x : τ).e)◦ = fun f (x : τ◦).e◦

The point of erasure is to say that adding closed recursive functions to S doesn’t give
it any more capability than it already has, which makes sense as closed functions do
exactly the same thing as normal functions. This can then be used to show that
equivalent terms in S are equivalent in C , since removing the closed functions doesn’t
affect the language’s power.

Future Work

There is plenty more work that can be extended from this research, as it was mostly a
demonstration of a possible approach. The most logical extension would be to apply
this methodology to other translation phases of a compiler, like the allocation phase.
Unfortunately other phases will be significantly more complicated to do, as the
combined language increases in complexity as the difference between the source and
target languages increases. Closure conversion is a good starting place due to the
similarity between the languages, though it could be possible to extend this
methodology to other phases of a compiler.

Contextual Equivalence

The idea behind contextual equivalence is that for two terms to be equivalent, any
program that could use them will behave the same no matter which term is used
inside it. Formally, we write ∆; Γ `C e1 ∼= e2 : τ if both terms e1 and e2 can be typed
at τ , and for every context C : (∆; Γ . τ) (· . int) (a program with a hole in it
which both e1 and e2 fit into), we have that C{e1} ' C{e2}, which simply states that
C{e1} and C{e2} will have the same terminating behavior (either loop or terminate).

Contextual Equivalence Visualization

e1 e2

Context C Context C

e1 e2

if and only if

These are
Contextually equivalent (∼=)

These behave the same
For all contexts C

Fits into Fits into

Statement of Compiler Correctness Theorem

Given a term ∆; Γ `S e1 : τ whose translation is ∆; Γ `S e1 : τ e1, we have that
∆; Γ ` e1 ` backτ ([overΓ/Γ]e1) : τ

This essentially says that e1 is contextually equivalent to e1, however these two terms
don’t have the same type in the combined language. Thus we need to wrap the
compiled e1 in an overΓ substitution and backτ to make it have a matching type.
Thus this theorem guarantees that the compiler preserves the behavior of the code
that it compiles, so we have a verification of its correctness.

Equivalence Preservation Visualization

e1 e1 e1 e1

e2 e2 e2 e2

⇒ ⇒ ⇒
Erasure

Compiler

Correctness Abstraction
∼=S ∼=C

e1 ∼=C backτ(e1)

e2 ∼=C backτ(e2)

∼=C ∼=T

The overτ substitutions for compiler correctness are left out for conciseness.

Statement of Equivalence Preservation Theorem

Given terms ∆; Γ `S e1 : τ and ∆; Γ `S e2 : τ whose translations are
∆; Γ `S e1 : τ e1 and ∆; Γ `S e2 : τ e2, then we have that

∆; Γ `S e1 ∼= e2 : τ⇒∆; Γ `T e1 ∼= e2 : τ

This essentially states that if two terms are equivalent in the source language, then
the terms that they compile to are equivalent in the target language. Therefore, the
compiler preserves equivalence.
To prove this we use our compiler correctness theorem, but we also need to show that
if two terms are equivalent in S then they are equivalent in C , and similarly if two
terms are equivalent in C then they are equivalent in T . The latter is simple since T
is a subset of C , but for the former we need another translation, which we call erasure.

Abstract

We have developed a methodology for verifying the correctness of the closure conversion
phase of a compiler, adapted from the work by Perconti and Ahmed. This lets us verify
that individual components of programs are compiled correctly, so they can be linked with
any other code and still behave as desired. We do this by using a combined language
that encompasses both the source and target languages in which the compiled code
can be reasoned about alongside its source, which we do using contextual equivalence.
Our main improvement over previous methods is that we do not need boundaries that
separate the source and target language while inside the combined language.

Combined Language

Our language C is a combined language of the source and target languages, with all
terms and types from both languages. The source language S is System F extended
with recursive functions and existentials. The target T is the closure converted
version of the source, so it is the same except it has closed recursive functions and
application instead of normal recursive functions and application.

τ :: = α | unit | int | τ × τ | τ → τ | τ ⇒ τ | ∀α.τ | ∃α.τ
e :: = () | n | e p e | ifz(e, e, e) | x | 〈e, e〉 | πie
| fun f (x : τ).e | e e | fun f (x : τ).e | e ∧ e
| Λα.e | e[τ] | pack[τ ′, e] as∃α.τ | unpack[α, x] = e in e

p :: = + | − | ∗
Γ :: = · | Γ, x : τ

∆ :: = · | ∆, α

Two Different Functions

The main thing of note about the combined language is the presence of two types of
recursive functions. There are normal recursive functions, and then there are closed
recursive functions, which are generated from normal recursive functions during
closure conversion. They behave the same as normal recursive functions, however
they can only use their argument and bound function variable, all other variables are
not in scope inside the function (hence “closed”).

∆ ` τ type ∆; Γ, f : τ → τ ′, x : τ ` e : τ ′

∆; Γ ` fun f (x : τ).e : τ → τ ′ Tfun

∆ ` τ type ∆; f : τ → τ ′, x : τ ` e : τ ′

∆; Γ ` fun f (x : τ).e : τ ⇒ τ ′ Tccfun

Closure Conversion

The closure conversion translation is essentially the standard translation, with the
slight difference that the functions in the translated language are denoted as closed
recursive functions. Thus we have the type transaltion for functions as

|τ1→ τ2| = ∃α.((|τ1| × α)⇒ |τ2|)× α
For closure conversion the only interesting translation rules are for functions and
applications, the rules for which are below:

Γ = x1 : τ1, ..., xn : τn
∆; Γ, x : τ, f : τ → τ ′ `S e : τ ′ ē

∆ `S τ type
τenv = |τ1| × ...× |τn|

∆; Γ `S fun f (x : τ).e : τ → τ ′ pack[τenv ,
〈(fun f (y : |τ | × τenv).[F/f]S(ē)),E 〉] as |τ → τ ′|

Rfun

∆; Γ `S e1 : τ → τ ′ ē1 ∆; Γ `S e2 : τ ē2
∆; Γ `S e1 e2 : τ ′ unpack[α, x] = ē1 in(π1x) ∧ 〈ē2, π2x〉

Rapp

The first rule uses the following definitions:
E = 〈x1, 〈...〈xn−1, xn〉...〉〉
S = [π1y/x][π1π2y/x1]...[π1π2...π2y/xn−1][π2...π2y/xn]
F = pack[τenv , 〈f , π2y〉] as |τ → τ ′|

